305-CD-042-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Command Management Design
Specification for the ECS Project

October 1995

Hughes Information Technology Corporation
Upper Marlboro, MD

Flight Operation Segment (FOS)
Command Management Design Specification
for the ECS Project

October 1995

Prepared Under Contract NA S5-60000
CDRL Item #046

APPROVED BY

Cd E. Moore, Jr. /d 9/29/95
Ca Moore, FOS CCB ChairmanDate
EOSDIS Core System Project

Hughes Information Technology Cor poration
Upper Marlboro, Maryland

305-CD-042-001

This page intentionally left blank.

305-CD-042-001

Preface

Thisdocument, one of nineteen, comprisesthe detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. Thisincludesthe FOS design to support the AM-1 launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project
include:

305-CD-040
305-CD-041
305-CD-042
305-CD-043
305-CD-044
305-CD-045
305-CD-046
305-CD-047
305-CD-048
305-CD-049
305-CD-050
305-CD-051
305-CD-052
305-CD-053
305-CD-054
305-CD-055
305-CD-056
305-CD-057
305-CD-058

FOS Design Specification (Segment Level Design)
Planning and Scheduling Design Specification
Command Management Design Specification
Resource Management Design Specification
Telemetry Design Specification

Command Design Specification

Real-Time Contact Management Design Specification
Analysis Design Specification

User Interface Design Specification

Data Management Design Specification

Planning and Scheduling Program Design Language (PDL)
Command Management PDL

Resource Management PDL

Telemetry PDL

Real-Time Contact Management PDL

Analysis PDL

User Interface PDL

Data Management PDL

Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http://
edhsl.gsfc.nasa.gov.

iii 305-CD-042-001

Thisdocument isacontract deliverable with an approval code 2. Assuch, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class | and Class Il change control requirements described in the EOS

Configuration Management Plan, and changesto this document shall be made by document change
notice (DCN) or by complete revision.

Any guestions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation
1616 McCormick Drive

Upper Marlboro, Maryland 20774-5372

Y% 305-CD-042-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also alocates the level 4 FOS requirements to the subsystem
design.

Keywords: FOS, design, specification, anaysis, IST, EOC

% 305-CD-042-001

This page intentionally left blank.

vi 305-CD-042-001

Change Information Page

List of Effective Pages

Page Number Issue
Title Original

iii through xii Original
1-1land1-2 Original
2-1 through 2-4 Original
3-1 through 3-230 Original
AB-1 through AB-8 Original
GL-1 through GL-8 Original

Document History

Document Number Status/Issue Publication Date CCR Number

305-CD-042-001 Original October 1995 95-0671

vii 305-CD-042-001

This page intentionally left blank.

viii 305-CD-042-001

Contents

11
1.2
1.3
14
15

21
22
2.3

3.1
3.2

3.3

Preface

Abstract

1. Introduction

Lo L= o1uY {107z 1 o o OSSO P PPN 1-1
SCOPIE ..ttt h bR R R e R R et R e e R e Re Rt e e e e neen e e 1-1
U001 SRR RPTRI 11
StatuS anNd SChEAUIEc.ooeiee e 1-1
DOCUMENE OFQaNIZBLIONeieeiuireieieeietesie sttt sb et e e s b sneene e 1-1

Parent DOCUMENT ...t e e e e e e e e e e e e e e e e e s ennnreeeeeaeeas 2-1
APPIICADIE DOCUMENLS ..ottt esreenesneesneenneas 2-1
INFOrMationN DOCUMENLSvveiiceiieecieee et e et etee e etee e et e e e e e esaeeeerseesssseesabseessseesnrenesns 2-2
2.3.1 Information Document REfErenCedcceeeueeieceiecieeccee e 2-2

3. Command Management 3-1

Command Management CONTEXTcoiiriririeieeeee e 3-1
CMS Schedule CONtIOIEr ..o e e 3-4
3.21 CMS Schedule Controller CONLEXEcccurrerieeriererereseseseeee e 3-4
3.2.2 CMS Schedule Controller INterfacescocvvereereeeseere e 3-6
3.2.3 CMS Schedule Controller Object Modelcccccceeviiiiieciicee e, 3-9
3.24 CMS Schedule Controller Dynamic Modelccccovveveeieieeneeieceeseecee s 3-18
3.25 CMS Schedule Controller Data DiCtionarycccccoevereneneniesieenieneseseenes 3-36
GrouNd SCNEAUIE ... 3-53
3.3.1 Ground Schedul@ CONEXLcooiiieierierierie e e 3-53
3.3.2 Ground Schedule INtEIfaceSccoririrreienescee e 3-56
3.3.3 Ground Schedule Object MOAE!ccccoveiiiiiieieiceere e 3-57
3.3.4 Ground Schedule Dynamic Modelccooveiiiiiiiiiie e 3-57
3.3.5 Ground Schedule Data DiCtioNarycccccooeeveereneeseeieseese e e e eeesee e 3-70

IX 305-CD-042-001

34 CommMaNd MOAE ... 3-78

341 Command MOdel CONEEXTEoceriuerieriirie et s 3-78
3.4.2 Command Model INLEITACEScceiuiriririeriseseree e 3-80
3.4.3 Command Model Object MO ... 3-81
3.4.4 Command Model DynamiC MOdEl ..o 3-91
345 Command Model Data DICtIONAIYccccoeeeveieeneeiesiesie e 3-101
35 SPACECIalt MOEloceoeeieeeeceee et 3-121
3.5.1 Spacecraft Model CONEXLccceuerieririrerereseeee e 3-121
3.5.2 Spacecraft Model INtEIfaCesccoeeieiiiieieee s 3-124
3.5.3 Spacecraft Model Object Modelcccooveiieiiceceee e 3-127
3.5.4 Spacecraft Model DynamiC MOdEcooeeiiiiiineieresees e 3-136
3.5.5 Spacecraft Model Data DiCiONANYccoceieeieriereeieseeseeee e 3-160
G SR oo @ - [0 o TSR RRTRRPRR 3-181
3.6.1 Load Catalog CONLEXLccceeeeieeiieeiesieesiesee e ste e ste e e e sre e ens 3-181
3.6.2 Load Catalog INTEITACESccceeieieierierese e 3-184
3.6.3 Load Catalog Object MOdE!ccooiiieiiiieeeee s 3-187
3.6.4 Load Catalog DynamiC MOdElccccceeiiiiiiieiececeee e 3-191
3.6.5 Load Catalog Data DiCioNaryccccoeverirerenenieiesie s 3-212
Figures
3.1-1. CMS ConteXt DIagramc.ecceeieerieeiiesieseeeeseeseeseeseeseessesaesseeaesseesseesesseesseensens 3-2
3.2-1. Schedule Controller Context Diagramc.ceceeeeiereneneneneeeee e 3-5
3.2-2. Schedule Controller Object Model - Page 1ccocveiieciieiie e 3-10
3.2-3. Schedule Controller Object Model - Page 2ccccovveeveececeeceee e 311
3.2-4. Schedule Controller Object Model - Page 3 ..o 312
3.2-5. Schedule Controller Object Model - Page 4ooovveiiecieie e 3-13
3.2-6. Schedule Controller Object Model - Pagesccccovveeveeiececeee e 3-14
3.2-7. Schedule Controller Object Model - Page 6ccceoveieiiieniieeeeeeeeeeee 3-15
3.2-8. Schedule Controller Object Model - Page 7coevvveviecieee e 3-16
3.2-9. Schedule Controller Object Model - Page 8cccceveeveevececeee e 3-17
3.2-10. Schedule Controller Initialization EVENt TraCecccccvveeverieeseeniene e 3-19
3.2-11. Schedule Controller DAS Receipt Event Trace - No Constraint Violations 3-21
3.2-12. DASReceipt Scenario - Soft Constraint Violationccccceeceveevesceeseenesieeseeenns 3-24
3.2-13. DASReceipt Scenario - Hard Constraint Violationcccccveveneneenesienseeene 3-28
3.2-14. Late Change ReCEPt EVENE TIACEccvveeiieeiiieiiectee e see e see e reesnne e 3-31
3.2-15. "What-if" Receipt Scenario - Hard Constraint Violationccccceeevieenvecenneene 3-34

X 305-CD-042-001

3.3-1
3.3-2.
3.3-3.
3.3-4.
3.3-5.
3.3-6.
3.3-7.
3.3-8.
3.3-9.
34-1.
3.4-2.
3.4-3.
3.4-4.
3.4-5.
3.4-6.
3.4-7.
3.4-8.
3.4-9.

3.4-10.
3.4-11.
3.4-12.
3.4-13.

3.5-1.
3.5-2.
3.5-3.
3.5-4.
3.5-5.
3.5-6.
3.5-7.
3.5-8.
3.5-0.

3.5.10.
3.5-11.
3.5-12.
3.5-13.
3.5-14.
3.5-15.
3.5-16.
3.5-17.

Ground Schedule Context DIiagramcccecererereneneneeeeeeee e 3-54

Ground Schedule Object Model - page 1ccoocveiieenenieeeee e 3-58
Ground Schedule Object Model - page 2 - DIreCtiVESccceevveeeeceeviececeeceeene, 3-59
Ground Schedule Object MOde! - FIlEScccooiiiiieiieerere e 3-60
Ground Schedule Initialization EVENt TIraCeccccvveereriieneenene e 3-62
Expanded DAS Processing EVENt TTaCeccccveeeieere et 3-64
Delete from Schedule EVENE TTaCeccveceveeneeeseere et 3-66
Expected State Table Generation EVent TraCeccceveeeereeienieneese e 3-68
Ground Script Generation EVENt TraCeccovevveeieeneereeie et 371
Command Model Context Diagramcccecererererereneeeeeeee e 3-79
Command Model Object Model (1 Of 7) .veeeieeieeee e 3-82
Command Model Object Model (20 7) ovceeeeeeeeeceeeee e 3-83
Command Model Object Model (30 7) .oveveriiieieeeeree e 3-84
Command Model Object Model (4 Of 7) oo 3-85
Command Model Object Model (50f 7) vvvevieeceeeeeecee e 3-86
Command Model Object MOdel (6 OF 7)ooeeererieieeesere e 3-87
Command Model Object Model (7 0f 7) .oeeeieeeeeeee e 3-88
Command Model Initialization EVENt TraCecccceverereneneseniseseeee e 3-92
Command Model Expanded Directive List Event Traceccccocveeieieeneneneneens 394
Command Model Command Procedure Receipt Event Traceccocevveveeneennen. 3-95
Command Model Activity Definition List Receipt Event Traceccccceecveuenen. 3-97
Command Model RTS Load Definition Receipt Event Tracecccceeevevenieneene 3-99
Spacecraft Model ontext DIagramcccoeeereriereeieee e 3-122
Spacecraft Model Object Model (1 0f 6) ...ccveeeieerieeeceeseee e 3-128
Spacecraft Model Object Model (2 0f 6)ooveveeeirieiieeeeee e 3-129
Spacecraft Model Object Model (30f 6) ..c.veevveeiieiiecie e 3-130
Spacecraft Model Object Model (4 Of 6)....cceevveveeiieiecee e 3-131
Spacecraft Model Object Model (5 0f 6)ooeveeirieiiieeee e 3-132
Spacecraft Model Object Model (6 Of 6)cccveeieieiieieccce e 3-133
Spacecraft Model Initialization EVENt TraCeccceveveeveeiesieeseese e sieesieaeens 3-137
Spacecraft Model ATC Load Generation Event TraCeccceveveveeveeeeseeneennens 3-139
Spacecraft Model ATC Buffer Model Update Event Tracecccccevveeveecneenee 3-141
Spacecraft Model ATC Buffer Model Deletion Event Traceccccceveeevveiieenenne 3-143
Spacecraft Model ATC Buffer Display Event Traceccocvvveveeieeiencnencne 3-144
Spacecraft Model RTS Buffer Display Event Tracecocceveeeceeiiecciee v 3-146
Spacecraft Model Map Report EVENt TraCecccoveveveesieeie e eceeseesieesee s 3-148
Spacecraft Model Image Report EVENt TIaCeccevevenenenenereeeeeesee e 3-150
Spacecraft Model Compare Report EVENnt TraCecccevceeveecieecee e 3-151
Spacecraft Model Table Model & Image Update Event Tracecccccevvevieennne 3-153

Xi 305-CD-042-001

3.5-18.
3.5-19.
3.5-20.
3.6-1.
3.6-2.
3.6-3.
3.6-4.
3.6-5.
3.6-6.
3.6-7.
3.6-8.
3.6-9.
3.6-10.
3.6-11.
3.6-12.
3.6-13.
3.6-14.
3.6-15.
3.6-16.

3.2.2.
3.3.2.
34.2.
3.5.2.
3.6.2.

Spacecraft Model RTS Model & Image Update Event Traceccccoccevevenenene 3-155
Spacecraft Model Table Data Request Event Tracecccovevveeveeieneeneenienens 3-157
Spacecraft Model Ground Image Overwrite Event Tracecccccvevvveeveeiiennnnn, 3-158
Load Catalog Context DIiagraimccccevererereneneseeeesee e 3-182
Load Catalog External INterfacesccocoveeiineenenieneesee e 3-186
Load Generation REQUESESccuvceeieeiieiiesieesie e st et sae e ne e 3-188
L OB TYPES .ttt sttt bt bbbt 3-189
Load COMPONENESeeiieieiiierieeie ettt sb et s re e 3-190
Load Component File CIaSSESccceveeiieiieiicrie ettt 3-192
Load Catalog Internal INtEIrfacesccocvvevirerieiiieee e 3-193
Load Catalog Initialization EVENt TraCecccceveeieneenene e 3-195
Table Load Generation EVENt TraCecccoveveriririeeere e 3-197
Table Load Generation from FDF Load Contents Event Tracec.ccceeveveenen. 3-199
Table Load Generation for Clock Correlation Event Tracecccoceevvveenienen. 3-201
RTS Load Generation EVENE TTaCeccvceverirererieeriese s e 3-203
Microprocessor Load Generation EVent TraCecccccvvvvevenenenesieseese e 3-205
Flight Software Load Generation Event TraCeccoceveeveneeniencieneene e 3-207
ATC Load Generation EVENE TraCecocuvevereririeiesie e 3-209
Uplink Notification Receipt EVENt TIaCecceoveeeierirenieseseseseeee e 3-211
Tables

CMS Schedule Controller INterfaces........coovveieeiiee e 3-6

Ground Schedule INTEIfaCcESooeoiiiiie e 3-56
Command Model INTEITACESceieviririeeee s 3-80
Spacecraft Model TNLErfACceSccooiiiiiiree e 3-124
Load Catalog INEITACESccoiiiiieiiece e 3-184

Abbreviations and Acronyms

Glossary

Xil 305-CD-042-001

1. Introduction

1.1 Identification

The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL Item 046
305/DV 2 under Contract NA S5-60000.

1.2 Scope

The Flight Operations Segment (FOS) Design Specification definesthe detailed design of the FOS.
It alocates the Level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 046, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated
December 6, 1994. It coversreleases A and B for FOS. This corresponds to the design to support
the AM-1 launch.

1.3 Purpose

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule

This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. Thisdocument isunder the ECS Project configuration
control.

1.5 Document Organization

305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.
305-CD-042 contains the detailed design for Command Management Design Specification.
305-CD-043 contains the detailed design for Resource Management Design Specification.
305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Rea-Time Contact Management Design
Specification.

1-1 305-CD-042-001

305-CD-047 contains the detailed design for Analysis Design Specification.
305-CD-048 contains the detailed design for User Interface Design Specification.
305-CD-049 contains the detailed design for Data Management Design Specification.
305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

1-2 305-CD-042-001

2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for
the ECS Project, Volume 1. General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for

the ECS Project, Volume 2. AM-1 Mission Specific

2.2 Applicable Documents

The following documents are referenced within this FOS Design Specification or are directly ap-
plicable, or contain policies or other directive matters that are binding upon the content of thisvol-
ume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS)
and ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS)
and the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System
(EOS) AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM1 Project Spacecraft Software Devel op-
ment and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schemafor the ECS Project

502-1CD-JPL/GSFC Goddard Space Flight Center/MO& DSD, Interface Control Docu-

ment Between the Jet Propul sion L aboratory and the Goddard Space
Flight Center for GSFC Missions Using the Deep Space Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control Docu-
ment Between the Goddard Space Flight Center Mission Operations
Centers and the Network Control Center Data System

530-1ICD-NCCDS/POCC Goddard Space Flight Center/MO& DSD, Interface Control Docu-
ment Between the Goddard Space Flight Center Payload Operations
Control Centers and the Network Control Center Data System

530-DFCD-NCCDS/POCC Goddard Space Flight Center/MO& DSD, Data Format control Doc-

2-1 305-CD-042-001

540-041

560-EDOS-0230.0001

|CD-106

none

ument Between the Goddard Space Flight Center Payload Opera-
tions Control Centers and the Network Control Center Data System

Interface Control Document (1CD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

Goddard Space Flight Center/MO&DSD, Earth Observing System
(EOS) Data and Operations System (EDOS) Data Format Require-
ments Document (DFRD)

Martin Marietta Corporation, Interface Control Document (1CD)
Data Format Control Book for EOS-AM Spacecraft

Goddard Space Flight Center, Earth Observing System (EOS) AM-
1 Flight Dynamics Facility (FDF) / EOS Operations Center (EOC)
Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design Specifica-

tion.
194-201-SE1-001
194-202-SE1-001
193-208-SE1-001
308-CD-001-004
194-501-PA1-001
194-502-PA1-001

604-CD-001-004
604-CD-002-001

604-CD-003-001

194-WP-912-001
194-WP-913-003
194-WP-920-001
194-TP-285-001
222-TP-003-006
none

Systems Engineering Plan for the ECS Project

Standards and Procedures for the ECS Project

Methodology for Definition of External Interfaces for the ECS Project
Software Development Plan for the ECS Project

Performance Assurance Implementation Plan for the ECS Project

Contractor's Practices & Procedures Referencedinthe PAIPfor theECS
Project

Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

Operations Concept for the ECS project: Part 2B -- ECS Release B, An-
notated Outline, 3/95

ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

EOC/ICC Trade Study Report for the ECS Project, Working Paper
User Environment Definition for the ECS Project, Working Paper
An Evauation of OASIS-CC for Usein the FOS, Working Paper
ECS Glossary of Terms

Release Plan Content Description

Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

2-2 305-CD-042-001

560-EDOS-0211.0001 Goddard Space Flight Center, I nterface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations Sys-
tem (EDOS), and the EOS Ground System (EGS) Elements, Prelimi-
nary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations Divi-
sion, NASA Security Office: Automated Information Security Hand-
book

2-3 305-CD-042-001

This page intentionally left blank.

2-4 305-CD-042-001

3. Command Management

The Command Management subsystem (CMYS) is responsible for providing tools used to manage
the planned operations of the EOS spacecraft and their instruments. Planned operations are
managed by means of ground scripts, preplanned command procedures, and spacecraft and
instrument loads containing stored commands, data, or software. Ground scripts are created by
CM S based on the Detailed Activity Schedule (DAS) created by Planning & Scheduling subsystem
(PAYS). Preplanned command procedures are created by the Procedure Builder, described in Book 9
of the FOS Design Specification, and validated by CMS.

Loads that are ready for uplink are generated by CMS from load content information. The five
types of load contents processed by CMS are: absolute time command (ATC), which are created
by CMS based on the DAS from PAS; relative time sequence (RTS), which are created either by
the FOS User Interface subsystem (FUI) or externally to the FOS and must follow aformat defined
in the PDB; table, which are created either by FUI or externally to the FOS and must follow a
format defined in the PDB; microprocessor, which are created externally to the FOS; and flight
software, which are created externally to the FOS. Each type of load contents is processed
differently by CMS: ATC and RTS load contents consist of commands and time tags that are
converted to binary; table load contents consist of data fields that are converted to binary;
microprocessor and flight software load contents are already in binary form when received by
CMS. Once the load contents is in binary, CMS formats the load data for uplink by the FOS
Command subsystem.

The CMS aso generates reports on load contents and current uplink status and maintains
information on the current state of spacecraft memory.

The CMS design includes five components: Schedule Controller, which is responsible for
receiving the DAS from PAS and initiating the generation of products based on the DAS; Ground
Schedule, whichisresponsible for maintai ning a continuous schedul e of commands and generating
products based on that schedule; Command Model, which isresponsible for performing rule based
constraint checks; Spacecraft Model, which models spacecraft memory; and Load Catal og, which
generates and maintains loads that are available for uplink.

3.1 Command Management Context

The CM Sinterfaces with the other FOS subsystems and with external entities. These interfacesare
shown in Figure 3.1-1 and described below.

Planning and Scheduling Subsystem - The Planning and Scheduling subsystem (PAS) generates
an integrated, conflict-free schedule of space and ground activities for each spacecraft for each
target day. PA S sends this schedule with arequest to generate ATC loads and ground scripts based
on the schedule. CMS performs command-level constraint checking and returns conflict
information to PAS. PAS allows the user to override soft constraint violations and returns a
constraint override status to CMS. Once the ATC load is built, CMS sends an uplink request for
the load to PAS.

3-1 305-CD-042-001

€

T00-¢70-AdD-50€

FOS Planning
& Scheduling

<&—— Uplink Request, Load

Conflict Information,

Delete Notification

Load Generation Request,
Detailed Activity Schedule,

Constraint Override Status,

Orbital Events

Loads, Load Catalog Entry,
Reports, Ground Script,
Events, Check Point Files.

Y

FOS Data
Management

Memory Dump, Command DB,

Activity DB, Table DB,
Constraint DB, Laod Uplink
Notification, Initiaization
Files.

FOS Command

This Syg

Management

]

Status

Y

Expected State
Table Request
FOS
Telemetry

A

tem

Expected State
Table

Load Generation Requests, Preplanned Command
Procedure Validation Request, RTS Load Validation Request,
Constraint Override Status, Ground Script Generation Request,
Compare Request, Report Request, Display Data Request

Request Override Status, FOS User
Conflict Info, Display Data > Interace

CSMS Management

Subsystem

Figure 3.1-1. CMS Context Diagram

The schedule that PAS sends to CM S includes the orbital events that were used in generating the
schedule. CM S includes these orbital events in the Integrated Report and in the ground script as
comments.

CMSis also responsible for notifying PAS if aload that has been scheduled for uplink has been
deleted from the load catal og.

User Interface Subsystem - The FOT requests generation of RTS, table, microprocessor, and
flight software loads from load contents files via the FOS User Interface Subsystem (FUI). CMS
generates the load and returns a status to FUI.

FUI also sends requests for ground script generation to CMS. CM S generates a ground script and
returns a request status to FUI. CMS also provides ground script information for a report on
request.

FUI sends command procedures and RTS load contentsto CM Sfor validation. The CM S performs
aconstraint check of the command procedure or RTS and returns the results. FUI allows the user
to override soft constraint violations and, for RTS loads, forwards the override statusto CMS.

FUI sends requests for generation of a memory image from collected dump telemetry to CMS.
These requests may include a request for comparison of the dump image to a load or ground
reference image, or for an image report on the dump image. CM S generates the dump image and
performs the comparison or generates the report as requested. A statusis returned to FUL.

The CMSisalso responsible for sending requested spacecraft memory image and map information
to FUI for displays and reports.

Analysis Subsystem - The FOS Analysis subsystem requests generation of atable load containing
spacecraft clock correlation data. CM S generates the table load and returns a status to Analysis.

Telemetry Subsystem - The FOS Telemetry subsystem requests generation of an Expected State
Table by CMS. CMS generates the table and returnsiit to Telemetry.

Data Management Subsystem - The CMS gets definitions of spacecraft tables, activities, and
commands from the Data M anagement Subsystem (DMS). These definitions are used in validating
and generating loads. DM S al so provides constraint definitions, which are used in validating loads,
activities, and procedures, and command execution verification definitions, which are used in
generating expected state tables.

The CMS generates |oads which will be uplinked by the Command Subsystem. The CMS stores
these loads, in the form of the binary uplink load, the load image, the load report, and the load
contents file from which the load was generated with DMS. For each load generated, CM S adds an
entry to the load catalog which is maintained by DMS.

The CMS gets raw memory dump telemetry from DM S and uses these data to construct a dump
image. Thisdump image may be input to a comparison, input to areport, or stored with DMS for
forwarding to the SCF or SDF.

Persistent datathat must be maintained by CM S are periodically checkpointed to DMSand areread
in when CMS is initialized. These include spacecraft memory images and maps, the ground
schedule, and expected state tables.

The CMS sends event messages generated as a result of CM S processing to DMS. DMS passes
load uplink completion notification messagesto CMS.

The CMS stores the reports that it generates with DMS.

3-3 305-CD-042-001

3.2 CMS Schedule Controller

The Schedule Controller is a persistent process that runs on the FOS Data Server. It is responsible
for initiating the generation of products that are based on schedules received from PAS. These
products include ATC loads, ground scripts, integrated reports, expected state tables, and
command-level constraint check results.

The schedules generated by PAS are sent to Schedule Controller in the form of activity lists.
Schedule Controller expands each activity in the list using a database definition of the activity and
creates a directive list representing the expanded activity list. Subsequent CM S processing of the
directivelist by other CM'S componentsis initiated and controlled by Schedule Controller.

3.2.1 CMS Schedule Controller Context

The CM S Scheduleinterfaceswith several FOS subsystems, as shown in the Context Diagram and
summarized below.

Planning & Scheduling:

« Sends a DAS, which is a conflict free schedule of activities, to request ATC load
generation.

« Sends a Late Change, which is another form of DAS, to request regeneration of ATC
load(s).

e Sendsa"What if" list, which is another form of a DASthat is only constraint checked and
no load is generated.

« Sends an uplink schedule, which isa DAS consisting of uplink activities. These activities
are added to the ground schedule.

+ Receives a CMS Status, which returns the status of DAS, Late Change or "What if"
processing.

« Receivesalist of uplink requests, which was generated when processing the input DAS or
Late Change activity list

CMS Load Catalog:
» Recelvesaload deletion request, whichisaDAS d for which all associated |oads are to be
deleted

« Receives a generate ATC load request, which is alist of directives from which an ATC
load is to be built.

CMS Ground Schedule:

e Provides alist of directives which will be used for continuity information in constraint
checking adirective list

3-4 305-CD-042-001

G-€

T00-¢70-AdD-50€

DAS, Late Change,
PAS ——"What If", Simulation,
Uplink Schedule

his System

CMS Status,
Uplink Request

CMS
Schedule

Directive List

CMS Ground
Schedule

Directives,
Delete Directives,
Directive List Request

Load Deletion
Request, Generate—>>
Load Request

CMS Load
Catalog

Events

N

Activity Definitions,
DMS Command Definitions, -

Constraint
Check
Status

Rule-Based Constraint Definitions

Command List———>>

CMS
Command
Model

Figure 3.2-1. Schedule Controller Context Diagram

» Recelvesadeletedirectivelist, which isalist of directives to be removed from the ground

schedule.
« Receives an add directive list, which is a list of directives to be added to the ground
schedule
Data Management:

« Provides activity definitions, which contain the expansion instructions for an activity.

 Provides command definitions, which include the command execution verification
definitions and an optional rule based constraint definition.

« Recelves events, which are status messages about CM S Schedul e processing.

3.2.2 CMS Schedule Controller Interfaces

Table 3.2.2. CMS Schedule Controller Interfaces (1 of 3)

Interface Interface Class Interface Class Service Service User | Frequency
Service Description Provider
DAS | FmMsProcessSchedule | Proxy between PAS | CMS: PAS: 1/day
Processing and Schedule ScheduleController | ATCLoadGenerator
Controller
FoScDetActSched List of scheduled

activities which
Baila] Rt
chedule y

FoScActivity %chedu ed act|V|t|es

Det rEeci ACP ivity

FpCrConflictResponse Response to soft .
constraints found in
DAS command list

Respond to | FpCrStatusUpdater gﬁ%xaébetwe nPAS | PAS CMS:

AC dy MS:Schedule Schedule
Sc edule Controller Controller
FoMsCMSStatus Results of Activity

List processing

FmPcUplinkSchedreq hqed

I|n fu I|nk
t|m stj g
ate ange
processmg)
Late FmMsProcessSchedule Pr%f%bet\geen PAS | CMS: PAS: 1/week
Change, ScheduleController | ATCLoadGenerator
Processing Controller

FoScLateChange List of scheduled
activities which

constltutes the Late

Change

Activi Schedule

FoScActivity %cheduled aé:tlvmes
Detalled Ac Vit
Schedul y

FoMsCMSStatus Status of Late .
Change processing

3-6 305-CD-042-001

Table 3.2.2. CMS Schedule Controller Interfaces (2 of 3)

Interface
Service

Interface Class

Interface Class
Description

Service
Provider

Service User

Frequency

FpCrConflictResponse

Response to soft
constraints found in
DAS command list

FmPcUplinkSchedReq

eh??deulln% of ATC

uplin

"What If*
Processing

FmMsProcessSchedule

Proxy between PAS
and Schedule
Controller

CMS:
ScheduleController

PAS:
ATCLoadGenerator

1/week

FoScConstaintCheck

List of scheduled
activities which
constitutes the,

What If" Activity
Sch dule

FoScActivity

cheduled actlvmes
that make J
Activity Sche ule

FoMsCMSStatus

Status of What If
processing

Simulation
Processing

FmMsProcessSchedule

Proxy between PAS
and Schedule
Controller

CMS:
ScheduleController

PAS:
ATCLoadGenerator

1/month

anScSimuIationSchedu

List of scheduled
activities which
COHSI]II utes the
Slmu caamon Actlwty

FoScActivity

Scheduled activities
that m g the
Acthlty Sch dule

FoMsCMSStatus

Status of Simulation
processing

FpCrConflictResponse

Response to soft .
constraints found in
DAS command list

Validate
Commands

FmMsValidateConstrai
nts

Prox between
:Co mandMo
deI dCMS

Schedule Controller

CMS: Command
Mo d |

CMS
Schedule Controller

1/day

FmScContCk

Request for
constraint check.

FoMsCMSStatus

Status of constraint
check.

FmMsStoreATCLoad

Pr0>éy between
LoadCatang

ScheduleControIler
checking for the
existence of a
specified load.

CMS:
Load Catalog

CMS:
ScheduleController

1/week

Delete ATC
Load

FmMsStoreATCLoad

Pro between
Sy LoadCatang

Sc e uIeConTroIIer
%uestlng? getlon
specified load.

CMS:
Load
Catalog

CMS:
ScheduleController

1/month

3-7

305-CD-042-001

Table 3.2.2. CMS Schedule Controller Interfaces (3 of 3)

Interface
Service

Interface Class

Interface Class
Description

Service
Provider

Service User

Frequency

Stor
Loa

ATC

FmMsStoreATCLoad

Proxy between
CMS:L oadCatalog
and CM

ScheduleControIIer
qduestrn((:] storage
n AT

CMS:
Load
Catalog

CMS:
ScheduleController

1/day

FoLiATCLoad

Contains ATC
binary load data

CMS: Load Catalog

CMS:
Schedule Controller

1/day

Get ATC
Buffer Start
Time

FmSmMapBuffer

Proxy between
CMS:Schedule
Controller and
CMS: Spacecraft
Model.

CMS: Spacecraft
Model

CMS:
Schedule Controller

1/day

FmMsATCBufferInfo

Contains Detailed
Activity List and
start time of ATC
buffer

Co#rmand
intg ATC
Buffer

FmSmMapBuffer

Bl Eoesn

ntroller and
CM[? :Spacecraft
Model.

CMS:
SpacecraftModel

CMS:
Schedule Controller

1/day

FmMsLoadData

Contains list of
directives for one
load.

FmMMsATCMapRequest

uestto Map one
|?st ?P
er mo

return a Ilst of Ioads.

Delete
Directives

FmGsGroundData

Prox twee
CM Sﬁ\ gule
Eontrol er anéi
Sch dule
Re(%uests deletlon
rectives WII
eCI jed DAS |
0H1 Groun
e

CMS:
Ground
Schedule

CMS:
ScheduleController

1/month

Add
Directives

FmGsGroundData

Proxy between
CMS:Schedule

Controlle(r) and
Schedule.

CMS:
Ground
Schedule

CMS:
ScheduleController

1/day

FmMnDirectiveList

gt of dlrectlves t
al tot e Groun

Return
Directive
List

FmGsGroundData

rox betwee
M gule

P

Cc

Contro er anéi
CMS: Groun
Schedule.

CMS:
Ground
Schedule

CMS:
ScheduleController

1/day

FmGsListRequest

Contains Ilst of DAS
id's al All
dlrectlves |n the
Ground Schedule

that occur after the
tlme and that have

S1d’s that are in
the Ilst WI|| be
returned.

FmMnDirectiveList

List of directives.

3-8

305-CD-042-001

3.2.3 CMS Schedule Controller Object Model

The object model for Schedule Controller is shown in Figure 3.2-2 and described below. The
FmScScheduleController object receives and manages requests for schedule-related CMS
services. An FoScActivityList request of type FoScDetActSched, FoScLateChange,
FoScConstraintCheck, or FoScSimulationSched contains a conflict free, time ordered list of
activities. The type determines if CMS will perform constraint checking only or constraint
checking and ATC load generation. FmScScheduleController processes each FoScActivityList
object it receives by expanding the activitiesin the list and building FmMnDirectiveList, which is
alist of FOEcDirectives.

FmACActivity is responsible for expanding the activity using information passed to it by
FmScScheduleController and supplied by FOAcActivityDefinition to generate the absolute times
and parameter list for each of the directives that make up the activity. FOAcActivityDefinition is
derived from FoDbA ccessor and is responsible for retrieving the database definition of an activity
that FmACActivity uses. If an activity definition includes an execute RTS or start procedure, these
are expanded into alist of directives at thistime.

FmScScheduleController uses the proxy FmGsGroundData to retrieve the ground and space
directives from the ground schedule. The directives that are retrieved from the ground schedule
will be merged with the FmMnDirectiveList to create the FmScConstCk object. This
FmScConstCk object contains a time ordered list of ground directives and space directives to be
constraint checked.

A message is sent to FmScCommandModel via the FmM sV alidateConstraints proxy to request
constraint checking the merged command list. Each command in the FmScConstCk list will be
constraint checked based on an optional constraint check rule that is associated with each
command. An FOMsCM SStatus reflects the status of CM S processing of an FoScActivityList and
is returned to FmScScheduleController and then passed to PAS via the FpCrStatusUpdater proxy
class.

FMSCATCSchedule is responsible for coordinating the building of the load, generating load
reports, updating the load catalog, partitioning the load, and updating the ATC buffer model.
FmMSCATCSchedule invokes FmScMapBuffer, which is the proxy to the spacecraft model, to
partition the load based on the uplink time and the available space in the ATC buffer.
FmScMapBuffer returns a list of FmMsLoadData objects each which contain a load file and an
associated uplink window. For each FmMsLoadData object, FmMSCATCSchedule creates an
FOLIATCLoad object. The FOLIATCLoad object generates a binary load file and a load report.
After the load is generated, FmMSCATCSchedul e uses accesses the FmMsStoreATCL oad object.
FmMsStoreATCLoad is the proxy to the load catalog and is responsible for updating the load
catalog with the information in the FOLIATCLoad object. For each partition load, an
FoScUplinkSchedule object, which contains the uplink window time of an ATC load, is created
and sent to PAS.

FmGsGroundData is the proxy to the FmScGroundSchedule, which is responsible for adding and
deleting directivesin the ground schedule.

3-9 305-CD-042-001

0T-€

T00-¢70-AdD-50€

ini {PAS Proxy}

FmMsProcessSchedule

FpCrConflictResponse

- Connect(): EcTint

+ ConstraintOverride(enum(y, n)) EcTVoid

+ DeleteLoads(EcTInt) EcTint

- Disconnect(): EcTVoid

+ ProcessActSchedule(FoScActivityList)EcTVoid
- SendActSched(FoScActivityList)EcTVoid

- SendDeleteReq(EcTInt) EcTVoid

sends

{Gound Schedule Proxy}

FmGsGroundData

+

——send delete request——

is sent

CreateConnection(): EcTint

DeleteDirectives(const RWSlistCollectables&EcTVoid
DeliverDirectives(const FmMnDirectiveList&EcTVoid

DestroyConnection() EcTVoid

Receive() : RWCollectable

ReturnCCList(const RWTime&, const RWSListCollectables&mMnDirectiveList
Send(const RWCollectable&) EcTVoid

1 .
© sends directives

+

Send(const RWCollectable&) EcTVoid
UpdateBuffer(const FmMsUpdateBuffer&EcTVoid

{Spacecraft Model Proxy}

Figure 3.2-2.

CONTINUED

B
| ® [FmACActivit
sends pand I MACACtivity |
fad CONTINUED
FoScActivityLis FmScScheduleController fal
mylD @————is sent to————— myDASidList: RwSlistCollectables —creates—| FmMnDirectiveList |
myEventPtr: FoEvEvent*
" InitializeController(): EcTVoid CONTINUED
= + MessageHandler(): EcTVoid
ProcessActivities(FoScActivityList)
CslfMessageHandler ProcessDeleteReq(EcTInt) EcTint
handles - SendEventMessage(FoEVEvent)EcTVoid nd
+ Connect) I IPC ~ | - SendStatus(const FoMsCMSStatus)EcTVoid SR sends
h - SendUplinkSchedReq(FmPcUplinkSchedReqEcTVoid
+ Disconnect()
+ Receive() i
+ Send() -
FmPcUplinkSchedReq
= myLoadName: RWString
myNumOf Partitions: EcTint
FmMsStoreATCLoad mySizeOfLastPartition EcTint
sends mySizeOfLoad: EcTint
+ CheckForLoad(EcTInt) EcTint myWindowlInterval: FOSTimelnterval
+ CreateConnection(): EcTInt
+ DeleteLoads(const RWSlistCollectables&EcTint
+ DestroyConnection() EcTVoid . .
- Receive(): EcTint is sent DASid sends il
- Send(const RWCollectable&) EcTVoid directives
+ StoreLoad(const FOLIATCLoad&)EcTint fo FoMsCMSStatus
; myld : EcTint
{Load Catalog Proxy} sent by FoEVEventLogger myStatus : RWCString is received
=] by
{DMS Proxy}
FmSmMapBuffer
+ CreateConnection(EcTVoid) EcTint 1s regelved
+ DeleteBuffers(const RWSlistCollectables&)EcTVoid y PAS P
+ Destroy(ECTVoid): EcTVoid = O roxy}
+ GetATCBufStartTime(const FOEcTime&FmMsATCBufferinfo FoCrStatusUpdater
+ MapA‘I;C(const FmMnDirectiveList&, const FOSTimelnterval&, const FOEcTime&ySlistCollectablds& FmScATCSchedule p P
EcTInt
+ Receive(EcTVoid): RwslistCollectables& CONTINUED

Schedule Controller Object Model - Page 1

T1-€

T00-¢70-AdD-50€

==

= _ FoScActivityList FoScActivity
FoScOrbitalEvents K myActld : EcTInt
- myTime : RWTime - myld :EcTint <o—@ myActDefName : RWString
- myName : RWString myStartTime : RWTime
myStopTime : RWTime
myParamValueList : RWSlistCollectables
B
FoScDetActSched FoScUplinkSchedule FoScConstraintCheck
+ myOrbitalEvent : RWSlistCollectables
+ myStartTime : RWTime
+ myStopTime : RWTime
+ myUplinkWindowReq : FOSTimelnterval ==
+

myVersion : RWString

=

FoScLateChange

- myStartTime : RWTime

Figure 3.2-3.

FoScSimulationSched

- myATCBufferStart : EcTInt =0
- myStartTime : RWTime

- myStopTime : RWTime

- myVersion : RWString

FoScUplinkActivity

+ myLoadName : RWString

Schedule Controller Object Model - Page 2

(A

T00-¢70-AdD-50€

FmMnDirectiveList

- myld : EcTInt
- myStartTime
- myStopTime

: RWTime
: RWTime

=

+ o+ o+ o+

FoEcDirective
FmMnDirectiveList(FpCrActivityList) EcTVoid

CreateExpandedList(FpCrActivityList) EcTVoid
FindConstraints(): FoMsCMSStatus
MergeWithList(const RWDlistCollectables)

= =2
. FmScDAS EmSscSim FmScConstCk
- myOrbitalEvents: RWSlistCollectables
+ FindConstraints(): FoMsCMSStatus + MergeWithFilter(const RWDlistCollectables)EcTVoid
+ GetPartitions(const RWTime) RWSlistCollectables
= =
: is sent
FmScUplinkSched FmScWhatlf by
Z =
FmScLateChg
FmMsValidateConstraints
+ CreateConnection(): EcTint
+ DestroyConnection(): EcTVoid
+ Receive() : FOMsCMSStatusé&
+ Send(const RWCollectable&)} FoMsCMSStatus&
+ ValidateCommands(const FmScConstCk&)FoMsCMSStatus&
+ ValidateRTS(const RWCString&, const RWCString&FoMsCMSStatus&

{Command Model Proxy}

Figure 3.2-4. Schedule Controller Object Model - Page 3

€r-€

T00-¢¥0-dD-S0E

FoEcAbsoluteTime

FoEcTime

myEpoch : RWTime

FoEcDirective

+ EcTint

FoEcDeltaTime

myPlusMinusSign _: ECTChar
myStartStopindicator : EcTChar

myDASId : EcTint

y yld
myConstraints : RWSlistCollectables

myDataSourceld : FuTdDataSource* = NULL
myDirectiveText : RWCString

g

ontrol* K>—=@ myMnemonic

myLineNum : EcTInt
myProc : FoClProcedure*
myProcControl : FUCIProcC:
myProcFlag : enum {y,

myStatus : EcTint

myParameters : RWSlistCollectables

N}
mySource : enum{manual,proc,gs}

ontrolWin*

+ CheckSyntax(EcTInt errcode)
+ Execute()

+ LogDirective()

+ Parsef

+

FoEcParameter

myvalue

1]
UpdateStatus()
FoEcSpaceTime
_ myConversionFactor : EcTFloat = 1.024 Q
FoScActivitylnfo
myActivityld : EcTint
myNumberSpaceCommands ~ : EcTint
RWBitVec
e e AN
_ vec_ :RWByte*
v T T 7] FoEcSpaceDirective In
+ clearBit(unsigned int) : voi -
Y a0 :mngl RWByte* ~myBinary - RWBitVec FoEcGroundDirective
+ firstFalse() : size_t _ myCriticalFlag _ : EcTint | myKeyword : RWCsString
+ firstTrue() : size_t _ mylnhibiud :EcTint
+ NE —<> _ myMnemonic : RWCString
+ length() :size_t _ MyRTSFlag :EcTint
+ printOn(ostreamé&) : ostream& -
+ restoreFrom(RWvistream&) : void + FigureBinary) : EcTint
+ restoreFrom(RWFile&) : void
+ resize(unsigned int) : void ZX
+ saveOn(RWvostream&) : void
+ saveOn(RWFile&) : void
+ scanFrom(istream&) : istream&
_ lengthErr(unsigned int,unsigned int) : void
nbytes() :size_t
nfull() : size_t
lal In
FoEcRTCommand FoEcComment

it

myBinary : RWBitVec
myMnemonic : RWCString

rFoEcUpI\nkCommand

rFoEcExecRTS |

FoEcLabel

‘myName : RWCString
myOffset : EcTint

+ Jump() : EcTVoid

myKeyword : RWCString

FoEcOrbitalEventDirective

FoEcLogicalExp

FoEcProcedureCall

‘myOperator

L EcTInt

FoEcWait

+ Evaluate(FuClLiteral valuel, FuClLiteral value2) : EcTint
+ Evaluate(FuClLiteral valuel) : ECTint

setBit(unsigned int)
testBit(unsigned int)
indexRangeErr(unsigned int)

Figure 3.2-5. Schedule Controller Object Model - Page 4

v1i-€

T00-¢70-AdD-50€

=

FmAcActivity

+ ExpandActivity(FpCrActivity&)

: RWDlistCollectables

expand

FoDbAccessor

2 T

FMEXRTS

request FoAcActivityDef
definition
E f
expand FoEcDirective
FmExProcedure

- myDirectiveList : RWDIistCollectables
- myExecTime :RWTime
- myRTSNum : EcTInt

myDirectiveList : RWDIistCollectables

myExecTime : RWTime
myFilename : RWCString

+ ExpandRTS(RWDIistCollectables, RWDlistCollectables)

: EcTInt

ExpandProcedure(RWDIistCollectalbes) : EcTint

==

FoEcDirective

CONTINUED

=

FoEcDirective

CONTINUED

Figure 3.2-6. Schedule Controller Object Model - Page 5

q1-€

T00-¢70-AdD-50€

i CONTINUED

FmScScheduleController

controls

adds load to/
deletes loads from

FmScATCSchedule

myUplinkPeriod : FOSTimelnterval

+ GenerateLoad(FmScDAS): RwslistCollectables
+ GenerateLtChgLoad(FmScDAS, RWSlistCollectables)RWSlistCollectables

= {Proxy to FmLdLoadCatalog

FmMsStoreATCLoad

CheckForLoad(EcTInt): EcTint
CreateConnection(): EcTint

DeleteLoads(const RWSlistCollectables&) EcTint
DestroyConnection(): EcTVoid

Receive() : EcTint

- Send(const RWCollectable&): EcTVoid

+ StoreLoad(const FOLIATCLoad&): EcTint

is sent to
FmLdLoadCatalog

Lo+ o+

is created
by

creates/sends FoLiATCLoad

CONTINUED

receives

FmPcUplinkSchedReq

sends load info

FmMsLoadData

myLoadName : RWstring
myNumOf Partitions: EcTint
mySizeOfLastPartition: EcTint
mySizeOfLoad : EcTint
myWindowInterval: FOSTimelnterval

myDirListAddr : EcTint
myDirectiveList : FmMnDirectiveList
myLoadName : RWCString
myUplinkWindow : FOSTimelnterval

is sent
by

FmSmMapBuffer

+CreateConnection(EcTVoid): EcTint

+DeleteBuffers(const RWSlistCollectables&) EcTVoid

+Destroy(EcTVoid) : EcTVoid

+GetATCBufStartTime(const FOEcTime&) FmMsATCBufferinfo

+MapA'I)'C(const FmMnDirectiveList&, const FOSTimelnterval&, const FOEcTime&RrwslistCollectables&
EcTint

+Receive(EcTVoid) : RwSlistCollectables&

+Send(const RWCollectable&): EcTVoid

+UpdateBuffer(const FmMsUpdateBuffer&) EcTVoid

{Proxy to FmSmSpacecraft}

Figure 3.2-7. Schedule Controller Object Model - Page 6

oT-€

T00-¢70-AdD-50€

FoLiLoad

myDestination : RWCString
myDirectory : RWCString
myLoadContents : FoLiLoadContents
myLoadName : RWCString
myLoadSize : EcTInt
myNumberOfPieces : EcTInt
myOwner : RWCString
mySizeOfLastPiece : EcTInt
mySpacecraftld : EcTInt

myStatus : FOMsCMSStatus
myUplinkLoads : RWSlistCollectables
myUplinkPeriod : FOSTimelnterval

FoLiLoadlmage

FoLiLoadContents

o+t o+

BuildUplinkLoad(const FoLiLoadlmage&): EcTInt
ComposeReport() : EcTInt

CreateLoad(const FoMsLoadGenReq&). FOMsCMSStatus&
GenerateLoadlmage(const FoLiLoadContents&) EcTInt

FoLiLoadReport

FoLiATCLoadReport

FoLiATCLoad

myCriticalCommands : FmMnDirectiveList
myCriticalFlag : EcTInt

myDASId : EcTInt

myDirectiveList : FmMnDirectiveList
myLoadReport : FoLIATCLoadReport*

1+

BuildUplinkLoad() : EcTInt
ComposeReport() : EcTInt
CreateLoad(const FmMnDirectiveList&): FOMsCMSStatus&

Figure 3.2-8.

Schedule Controller Object Model - Page 7

myEndLocation : EcTInt
myLoadName : RWCString
mySize : EcTInt

myStartLocation : EcTInt

myType : RWCString
myUplinkPeriod : FOSTimelnterval

myCommandList : FmScCommandList
myControlCommands : FmScCommandList
myStartTime : RWTime

myStopTime : RWTime

myUplinkTime : RWTime

FoLiUplinkLoad

BuildLoad(const FoLiLoadlmage&): EcTiInt
BuildLoadData(EcTInt[]): EcTInt*
CCSDSWrap(EcTInt[]): EcTInt*

LT-€

T00-¢70-AdD-50€

= [PAS To CMS Proxy}

FoMsConflictinfo

- myCmdMnemonic : RWCString
- myConflictingCmd : RWCString

FpCrStatusUpdater
+ FpCrStatusUpdater()
+ FpCrStatusUpdater(const FpCrStatusUpdater&)
+ ~FpCrStatusUpdater()
+ operator=(const FpCrStatusUpdater&)
+ scheduleUplinkReq(const FoPcUplinkSchedReq)
+ sendStatus(FOMsCMSStatus &) :int
sends
sends
==
FoPcUplinkSchedReq ===
- myLoadName : RWCString FoMsCMSStatus
- myNumOf Partitions : EcTInt myld : EcTint

- mySizeOfLastPartition : EcTInt

- mySizeOfLoad : EcTint myStatus : RWCString

<>—@ - myConstraintTime : RWTime

- myld : EcTint

- myWindowlnterval : FOSTimelnterval

- mySoftHardFlag : EcTInt

/\

- myViolationInfo : RWCString

= =

=

FoMsStatusFailed FoMsStatusComplete

FoMsStatusPending

Figure 3.2-9. Schedule Controller Object Model - Page 8

3.2.4 CMS Schedule Controller Dynamic Model

The Schedule Controller Dynamic Model described in this section consists of the following
scenarios:

Schedule Controller Initiation

Detailed Activity Schedule Receipt with no constraint violations
Detailed Activity Schedule Receipt with soft constraint violations
Detailed Activity Schedule Receipt with hard constraint violations
L ate Change Receipt with soft constraint violations

Constraint Check Only Receipt

3.2.4.1 Schedule Controller Initialization Scenario

3.2.4.1.1 Schedule Controller Initialization Scenario Abstract

The Schedule Controller Initialization scenario describes the process of initializing the Schedule
Controller process.

3.2.4.1.2 Schedule Controller Initialization Summary Information
Interfaces:

DMS

Planning and Scheduling
CMS Command Model
CMS Spacecraft Model
CMS Load Catalog
CMS Ground Schedule

Stimulus;

Schedule Controller is started

Desired Response:

Establish connection to Planning and Scheduling
Establish connection to Command Model
Establish connection to Spacecraft Model
Establish connection to Load Catalog

Establish connection to Ground Schedule

3-18 305-CD-042-001

6T-€

T00-¢70-AdD-50€

FmScSchedule

Controller FmMsProcessSchedule FmMsValidateConstraints ~ FmGsGroundData FmMsStoreATCLoad FmSmMapBuffer DMS
Connect to PAS——>>1
< Receive Connection ___|
Status
Connect to Command Model————>>
<<——Receive Connection Status
Cannect to Ground Schedule >
<< Receive Connection Status
Connect to Load Catalog >
<< Receive Conngction Status
Conrject to Spacecraft Model >
<< Receive Connection Status
Request DAS id List >

<< Receive DAS id List

Figure 3.2-10. Schedule Controller Initialization Event Trace

« Retrieval of the DASid list
Pre-Conditions:

« DMS software has been initiated

« Planning and Scheduling software has been initiated

¢ CMS Command Model software has been initiated

« CMS Spacecraft Model software has been initiated

« CMS Load Catalog software has been initiated

« CMS Ground Schedule software has been initiated
Post-Conditions:

« Schedule Controller up and running

3.2.4.1.3 Schedule Controller Initialization Scenario Description

The Schedule Controller Initialization Scenario event trace diagramisshown in Figure 3.2-10. The
Schedule Controller will make the necessary connectionsto it's external entities. These are:

e Planning and Scheduling via the FmM sProcessSchedul e proxy
e Load Catalog viathe FmMsStoreATCLoad proxy

e Spacecraft Model viathe FmSmMapBuffer proxy

e Ground Schedule viathe FmGsGroundData proxy

¢ Command Model viathe FmMsV alidateContraints proxy

The Schedule Controller will also accessthe database in order to retrieve the latest DASid list. If
this list is not available then the Schedule Controller will create an empty id list. After the
connections are made and the DA S id list set-up, the Schedule Controller will bewaiting to receive
input from the PA S subsystem.

3.2.4.2 Detailed Activity Schedule Receipt with No Constraint Violations Scenario

3.2.4.2.1 Detailed Activity Schedule Receipt with No Constraint Violations Scenario
Abstract

The Detailed Activity Schedule Receipt scenario describes the receipt of a Detailed Activity
Schedule (DAS) from PAS, the expansion of the activities in the DAS into directives, requesting
command-level constraint checking of the expanded list, generation of ATC loads, and merging
the ground directives into the Ground Schedule.

3-20 305-CD-042-001

T¢-€

T00-¢70-AdD-50€

FmScSchedule

(proxy) Controller {proxy} {proxy}
EmMsP FmScValidateConstraints FmGsGroundData . I';gti
mMsProcess {proxy} FoLiATCLoad {proxy} FmAcActivity Management
Schedule FmSCcATCSchedule FmSmMapBuffer FmMsStoreATCLoad 9
——Process DAS—>>
Send Acitivity Nam >t
| Request Activity. >
Definition
< Return Activity
Definition
= Retyrn Command
List

Access Buffer,
Model

ke ReturnStart Time of,
Most Recent Buffer

v

Send Start Time of Biiffer Model >>
[<<—Retdirn List of Commands from Ground Schedul
Send DAS >
Command List
< Returr) CMS
Status
Send Expanded >
DAS
Request Patitions———>>f
I<<—Return Partiigns Load(s)—————
Send Generate Binary Load Request: >>
<€ Return Bingry Load(s)
Upgate Load Catalog >>
Update Buffgr Model—— >
Send DAS Command List >>

<< Return Status

< Send CMS
Status

Figure 3.2-11. Schedule Controller DAS Receipt Event Trace - No Constraint Violations

3.2.4.2.2 Detailed Activity Schedule Receipt with No Constraint Violations Summary
Information

Interfaces:
« Planning & Scheduling
- DMS
« CMS Command Model
« CMS Spacecraft Model
« CMSLoad Catalog
« CMS Ground Schedule
Stimulus:
« Receipt of DAS Activity List
Desired Response:
« ATC load(s) for time span of DAS stored in ATC Load Catalog
« Ground Schedule updated with directives and orbital events for time span of DAS
« Statusreturned to PAS
Pre-Conditions:
« Schedule Controller software has been initiated
Post-Conditions:
« Updated list of processed Detailed Activity Schedules stored with DMS

3.2.4.2.3 Detailed Activity Schedule Receipt with No Constraint Violations Scenario
Description

This scenario is shown in Figure 3.2-11 and can be broken down into 5 main functions:
« DASreceipt
« Activity Expansion
« Retrieval of Directivesfrom the ATC Buffer Model for Continuity in Constraint Checking
« Constraint Checking
« ATC Load Generation

The Schedule Controller receives a Detailed Activity Schedule activity list object from PAS and
instantiates aDAS Directive List object to receive the expanded activities.

3-22 305-CD-042-001

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokesits expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once al activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directivesfrom the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list iswhat will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule is identified and the associated command is constraint checked based on the rule. Since no
constraints were found when constraint checking the DAS, processing continues without
interruption.

In order to build the load, Schedule Controller invokes the create |oad function of ATC Schedule.
The create |oad function accepts a directive list that contains alist of the space directives from the
expansion of the DAS activities. ATC Schedule invokes the Spacecraft Model viaaproxy. The
Spacecraft model computes the number of partitionsthat the load will need to be broken into based
on the uplink period and the available space in the ATC buffer. The Spacecraft Model creates a
working ATC buffer model for each of the partitions and returnsalist of Load Data objects. Each
Load Data object contains the partitioned load and an associated uplink window. For each Load
Data object in the list, ATC Schedule creates an ATC Load object and invokes the create |oad
functionin ATC Load. ATC Load buildsthe binary load and the load report from the input list of
directives. ATC Schedul e then updatesthe load catalog viathe Store ATC Load proxy. StoreATC
Load creates an entry for the generated load in the load catalog. After theload catalog is updated,
ATC Schedule promotes the working ATC buffer model to a predicted ATC buffer modelsviathe
Spacecraft Model proxy.

Finally the Schedule Controller invokes the DAS processing function of Ground Schedule. The
Ground Schedule merges the Directivesin the DAS Command List into its time ordered directive
list.

3-23 305-CD-042-001

Ve

T00-¢70-AdD-50€

FmScSchedule

(proxy) Controller {proxy} {proxy}
EmMsP FmScValidateConstraints FmGsGroundData . I';gti
mMsProcess {proxy} FoLiATCLoad {proxy} FmAcActivity Management
Schedule FmSCcATCSchedule FmSmMapBuffer FmMsStoreATCLoad 9
——Process DAS—>>
Send Acitivity Nam >t
| Request Activity. >
Definition
< Return Activity
Definition
= Retyrn Command
List

Access Buffer,
Model

ke ReturnStart Time of,
Most Recent Buffer

v

Send Start Time of Biiffer Model >>
[<<—Retdirn List of Commands from Ground Schedul
Send DAS >
Command List
< Returr) CMS
Send CMS Status
< en
Status
|___Send Constraint,
Override
| __Send Expanded >
DAS
Request Patitions———>>f
I<<—Return Partiigns Load(s)—————
Send Generate Binary Load Request: >>
<€ Return Bingry Load(s)
Upgate Load Catalog >>
Update Buffgr Model—— >
Send DAS Command List >>

<< Return Status

< Send CMS
Status

Figure 3.2-12. DAS Receipt Scenario - Soft Constraint Violation

3.2.4.3 Detailed Activity Schedule Receipt with Soft Constraint Violations Scenario

3.2.4.3.1 Detailed Activity Schedule Receipt with Soft Constraint Violations
Scenario Abstract

The Detailed Activity Schedule Receipt scenario describes the receipt of a Detailed Activity
Schedule (DAS) from PAS, the expansion of the activities in the DAS into directives, requesting
command-level constraint checking of the expanded list, sending a soft constraint status to PAS,
receiving an override soft constraint message from PAS, generation of ATC loads, and merging
the ground directives into the Ground Schedule.

3.2.4.3.2 Detailed Activity Schedule Receipt with Soft Constraint Violations
Summary Information

Interfaces:

Planning & Scheduling
DMS

CMS Command Model
CMS Spacecraft Model
CMS Load Catalog
CMS Ground Schedule

Stimulus;

Receipt of DAS Activity List

Desired Response:
Find soft constraint, send soft constraint status to PAS and receive override message from

PAS

ATC load(s) for time span of DAS stored in ATC Load Catalog

Ground Schedule updated with directives and orbital events for time span of DAS

Status returned to PAS

Pre-Conditions:

Schedule Controller software has been initiated

Post-Conditions:

Updated list of processed Detailed Activity Schedules stored with DMS

3-25

305-CD-042-001

3.2.4.3.3 Detailed Activity Schedule Receipt with Soft Constraint Violation Scenario
Description

This scenario is shown in Figure 3.2-12 and can be broken down into 5 main functions:
« DASreceipt
« Activity Expansion
« Retrieval of Directives from the ATC Buffer Model for Continuity in Constraint Checking
« Constraint Checking
« ATC Load Generation

The Schedule Controller receives a Detailed Activity Schedule activity list object from PAS and
instantiates aDAS Directive List object to receive the expanded activities.

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokesits expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once al activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directivesfrom the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list is what will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule isidentified and the associated command is constraint checked based on the rule. For a soft
constraint is violation, a CM S Pending Status object is sent to PAS and DAS processing waits for
aresponse from PAS on whether to continue to process the DAS with soft constraints or to cease
processing. Upon the Schedule Controller receiving a override soft constraint indication,
processing continues.

3-26 305-CD-042-001

In order to build the load, Schedule Controller invokes the create load function of ATC Schedule.
The create load function accepts adirective list that containsalist of the space directives from the
expansion of the DAS activities. ATC Schedule invokes the Spacecraft Model viaaproxy. The
Spacecraft model computes the number of partitions that the load will need to be broken into based
on the uplink period and the available space in the ATC buffer. The Spacecraft Model creates a
working ATC buffer model for each of the partitions and returnsalist of Load Data objects. Each
Load Data object contains the partitioned load and an associated uplink window. For each Load
Data object in the list, ATC Schedule creates an ATC Load object and invokes the create load
functionin ATC Load. ATC Load builds the binary load and the load report from the input list of
directives. ATC Schedulethen updatestheload catalog viathe Store ATC Load proxy. Store ATC
Load creates an entry for the generated load in the load catalog. After theload catalog is updated,
ATC Schedule promotes the working ATC buffer model to a predicted ATC buffer modelsviathe
Spacecraft Model proxy.

Finally the Schedule Controller invokes the DAS processing function of Ground Schedule. The
Ground Schedule merges the Directivesin the DAS Command List into its time ordered directive
list.

3-27 305-CD-042-001

8¢-¢

T00-¢70-AdD-50€

FmScSchedule

(proxy) Controller (proxy) {roxy} FOS
FmScValidateConstraints proxy.
FmMsProcess {proxy} FmGsGroundData FmACcActivity Manggéiwem
Schedule EmScATCSchedule FmSmMapBuffer

—— Process DAS —>>

Send Acitivity Name >
Request Activity >
Definition
< Return Activity
Definition
<< Return Command
List
Access Buffer

Model >

< Return Start Time of
Most Recent Buffer

Send Start Time|of Buffer Model >>

<< Return List of Commands from Ground Schedule

Send DAS >
Commaryd List

< Return CMS
Stdtus

< Send CMS
Status

Figure 3.2-13. DAS Receipt Scenario - Hard Constraint Violation

3.2.4.4 Detailed Activity Schedule Receipt with Hard Constraint Violations
Scenario

3.2.4.4.1 Detailed Activity Schedule Receipt with Hard Constraint Violations
Scenario Abstract

The Detailed Activity Schedule Receipt scenario describes the receipt of a Detailed Activity
Schedule (DAS) from PAS, the expansion of the activities in the DAS into directives, requesting
command-level constraint checking of the expanded list, sending a hard constraint status to PAS.

3.2.4.4.2 Detailed Activity Schedule Receipt with Hard Constraint Violations
Summary Information

Interfaces:
« Planning & Scheduling
- DMS

« CMS Command Model

e CMS Spacecraft Model
Stimulus:

» Receipt of DAS Activity List
Desired Response:

« Find hard constraint, and send hard constraint status to PAS.
Pre-Conditions:

« Schedule Controller software has been initiated
Post-Conditions:

* none

3.2.4.4.3 Detailed Activity Schedule Receipt with Hard Constraint Violation
Scenario Description

This scenario is shown in Figure 3.2-13 and can be broken down into 4 main functions:
« DASreceipt
e Activity Expansion
e Retrieval of Directivesfrom the ATC Buffer Model for Continuity in Constraint Checking
e Constraint Checking

The Schedule Controller receives a Detailed Activity Schedule activity list object from PAS and
instantiates aDAS Directive List object to receive the expanded activities.

3-29 305-CD-042-001

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokesits expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once al activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directivesfrom the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list iswhat will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
ruleisidentified and the associated command is constraint checked based on therule. When ahard
constraint isviolated, aCM S Failed Status object is sent to PAS and processing of the DA S ceases.

3.2.4.5 Late Change Receipt Scenario

3.2.4.5.1 Late Change Receipt Scenario Abstract

The Late Change Recelpt scenario describes the receipt of a Detailed Activity Schedule containing
late change information from PAS, the deletion of |oads and ground directives generated from the
same DAS when it was previoudly processed and any subsequent DASs already processed, the
expansion of the activitiesin the DAS into directives, command-level constraint checking of the
expanded list, generation of ATC loads, and merging the ground directives into the Ground
Schedule.

3.2.4.5.2 Late Change Receipt Summary Information

Interfaces:
« Planning & Scheduling
« DMS

« CMS Command Model
« CMS Spacecraft Model
« CMSLoad Catalog

« CMS Ground Schedule

Stimulus:
« Receipt of Late Change Activity List
Desired Response:
e ATC load(s) built from late change DA S and subsequent DA Ss deleted from DM S

3-30 305-CD-042-001

T€-€

T00-¢70-AdD-50€

FmMsProcess

Schedule FmScSchedule FmMsStoreATCLoad Constraints EmSmManBuffer FmGsGround
PAS prox FmMsATCSchedule orox P i Data
{PAS proxy} Controller {proxy} {oroxy} {proxy} FOLIATCLoad (proxy} FmAcActivity
Process Late
[Change —>
Send Activity Nam >>f
|__Request Activity.
Definition
< Return Activity___|
Definition
<< Return Command List
Send Start Time of Late Change————>>
<< Return Starrt Time|of Buffer Modet
Send Start Timg of Buffer >>
<< Return List of Command from Ground Schedul
Send Late
Change List >
l< Return CMS
<(_Send CMS__| Status
Status
Process
—Constraint—>> Send Late)
Override i
Change DAS | _Send Late Change_)>
DAS id
< Return Uplink
Status
Reuest Partitions————>>
<&——Retuln Partitioned Load(s}————
Se¢nd Generate Binary Load Request >>
=<4 Return Bihary Load
Send Delete Request——>>f
Perform Delete >>
Update Load
Catalog >
——————————Update Buffer ModeH——>>
Semd :ate Change List >>
Send CMS << Return Status
< Sen |
Status

FmScValidate

FOS Data
Management

Figure 3.2-14. Late Change Receipt Event Trace

« Directives from late change DAS and subsequent DA Ss deleted from Ground Schedule
« ATC load(s) for time span of DAS stored in ATC Load Catalog
« Ground Schedule updated with directives and orbital events for time span of DAS
e Statusreturned to PAS
Pre-Conditions:
e Schedule Controller software has been initiated
« Spacecraft Model software has been initiated
« Load Catalog software has been initiated
« Ground Schedule software has been initiated
« Command Model software has been initiated
Post-Conditions:
« Updated list of processed Detailed Activity Schedules stored with DMS

3.2.4.5.3 Late Change Receipt Scenario Description
This scenario is shown in Figure 3.2-14 and can be broken down into 6 main functions:
« Late Change receipt
« Activity Expansion
» Retrieval of Directivesfrom the ATC Buffer Model for Continuity in Constraint Checking
e Constraint Checking
« ATC Load Generation
« Deletion of CMS Schedule Products

The Schedule Controller receives a Late Change Detailed Activity Schedule activity list object
from PAS and instantiates a DAS Directive List object to receive the expanded activities.

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokesits expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once al activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directivesfrom the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list iswhat will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule is identified and the associated command is constraint checked based on the rule. Since no
constraints were found when constraint checking the DAS, processing continues without
interruption.

3-32 305-CD-042-001

In order to build the load, Schedule Controller invokes the create load function of ATC Schedule.
The create load function accepts adirective list that containsalist of the space directives from the
expansion of the DAS activities. ATC Schedule invokes the Spacecraft Model viaaproxy. The
Spacecraft model computes the number of partitions that the load will need to be broken into based
on the uplink period and the available space in the ATC buffer. The Spacecraft Model creates a
working ATC buffer model for each of the partitions and returnsalist of Load Data objects. Each
Load Data object contains the partitioned load and an associated uplink window. For each Load
Data object in the list, ATC Schedule creates an ATC Load object and invokes the create load
functionin ATC Load. ATC Load builds the binary load and the load report from the input list of
directives. ATC Schedulethen updatestheload catalog viathe Store ATC Load proxy. Store ATC
Load creates an entry for the generated load in the load catalog. After theload catalog is updated,
ATC Schedule promotes the working ATC buffer model to a predicted ATC buffer modelsviathe
Spacecraft Model proxy.

The Schedule Controller creates a list of DAS ids that have been previously processed and have
starting times after the late change DAS. These DAS ids are then removed from the list of pro-
cessed DASs maintained by the Schedule Controller. The Schedule Controller sends the list of
DASid that are after the Late Change to Load Catalog. Load Catalog deletes the ATC loads that
were generated from those DA Ss and their associated entries from the Load Catalog. Next the
Spacecraft Model will delete the ATC buffer models associated with each DAS id in the list the
Ground Schedule deletes all Directives associated with those DASs from the ground schedule.

Finally the Schedule Controller invokes the DAS processing function of Ground Schedule. The
Ground Schedule merges the Directivesin the DAS Command List into its time ordered directive
list.

3.2.4.6 "What-if" Scenario

3.2.4.6.1"What-if" Scenario Abstract

The Constraint Check Receipt scenario describes the receipt of a Detailed Activity Schedule con-
taining activities to be constraint checked, the expansion of the activities in the DAS into direc-
tives, and command-level constraint checking of the expanded list.

3-33 305-CD-042-001

ve€

T00-¢70-AdD-50€

FmMsProcess

Schedule EmScSchedule FmScValidateConstraints
{proxy} Controller {proxy}
Constraint
| Check Req >
Send Agtivity Name
<< Retufn Directives

< Send CMS __ |
Status

. Send Expanded >
Command List

<<—— Return Status

FOS Data
FmACcActivity Management

Request Activity S
Definition

< Return Activity
Definition

Figure 3.2-15. "What-if" Receipt Scenario - Hard Constraint Violation

3.2.4.6.2"What-if" Receipt Summary Information
Interfaces:

Planning & Scheduling

DMS

CMS Command Model
Stimulus:

Receipt of Constraint Check Activity List
Desired Response:

Status returned to PAS
Pre-Conditions:

Schedule control software has been initiated

Command Model software has been initiated
Post-Conditions:

none

3.2.4.6.3"What-if" Receipt Scenario Description

The event trace diagram for this scenario isin Figure 3.2-15 and can be broken down into 3 main
functions:

Constraint Check receipt

Activity Expansion

Constraint Checking
The Schedule Controller receivesa"What-if" activity list object from PAS and instantiatesa DAS
constraint check list object to receive the expanded activities.
For each activity in the "What-if" Activity List, the Schedule Controller instantiates an Activity
object and invokes its expand function. The Activity instantiates an Activity Definition object
which retrieves the activity definition from DMS. Activity converts each command in the database
definition of the activity to a Directive object of the appropriate type. Each Directiveis merged in
time order into the DAS Command List.
Once the expansion of aactivity schedule is complete, the Schedule Controller sends a message to
the Command Model object to constraint check the expanded command list. The Command Model
iterates through each command in the command list. Each command can have an optional con-
straint rule associated with it. Each rule is identified and the associated command is constraint
checked based on therule. A CMS Status object is sent back to PAS which indicates if any con-
straints were violated. Load Generation is NOT invoked for a constraint checking only scenario.

3-35 305-CD-042-001

3.2.5 CMS Schedule Controller Data Dictionary

FmScScheduleController

cl ass FntScSchedul eControl | er
The main controller in the building of an ATC load from an activity list

Public Functions

EcTVoi d MessageHandl er ()
Receives an activity list asinput, decides what type of object it is, and distributesit to the proper operation

Private Functions

EcTVoid InitializeController()
Initializes the Schedule Controller

EcTVoi d ProcessActivities(FoScActivitylList)
Processes an incoming activity list from PAS

EcTVoi d ProcessDel et eReq(EcTI nt)
Processes an incoming delete load request from PAS

EcTVoi d SendEvent Message(FoEvEvent)
Sends an event to the event handler

EcTVoi d SendSt at us(const FoMsCMSSt at us)
Sends a ground script generation status to the FUI proxy

EcTVoi d SendUpl i nkSchedReq(FmPcUpl i nkSchedReq)
Sends the alist of uplink schedule requests to PAS viathe proxy
Private Data

RWEl i st Col | ect abl es nyDASI dLi st
List of DASids

FoEvEvent* nmyEvent Ptr
Pointer to an event to be sent to the event handler

FmMsProcessSchedule

cl ass FnMVsProcessSchedul e
Proxy for PASto CMS Schedule Controller

Public Functions

FoMsCMSSt at us Constrai nt Override(enun(y, n))
Sends the constraint override flag to the schedule controller

EcTl nt Del et eLoads(EcTI nt)
Deletes the load(s) for the associated input DAS id

EcTVoi d ProcessAct Schedul e(FoScActi vityLi st)
Calls operation to send the activity schedule to the schedule controller

3-36 305-CD-042-001

Private Functions

EcTl nt Connect ()
Makes the IPC connection to the schedule controller
EcTVoi d Di sconnect ()
Disconnects the |PC connection from the schedule controller
EcTVoi d SendAct Sched(FoScActi vityLi st)
Sends the activity schedule to the schedule controller via |PC
EcTl nt SendDel et eReq(EcTI nt)
Sends a delete load request for a specified DAS to the schedule controller via lPC

FmMScATCSchedule

cl ass FnScATCSchedul e
Responsible for coordinating the building of the ATC load

Base Classes
publ i c FnBcSchedul e

Public Functions

RWEl i st Col | ect abl es Gener at eLoad(FnivhDi rect i velLi st)
This operation that will coordinate the following for DAS processing:

- Partitioning of the load if necessary
- Creation of the load and | oad report
- Updating the | oad catal og

- Updating the buffer nodel

- Creating an uplink request

RWEl i st Col | ect abl es Cener at eLt ChgLoad(const FnivhDirectivelLi st& const
RWEIl i st Col | ect abl es)

This operation that will coordinate the following for Late change processing:

- Partitioning of the load if necessary

- Creation of the load and | oad report

- Updating the | oad catal og

- Updating the buffer nodel

- Creating an uplink request

- Renoving entries fromthe | oad catal ogs and their associ ated | oads

Private Data

FCOSTi nel nterval nyUpl i nkPeri od
Requested uplink period for the load

FmPcUplinkSchedReq

cl ass FnPcUpl i nkSchedReq
Uplink request to be sent to PAS

Private Data

RWCSt ri ng nyLoadNane
Is the name of the load generated

EcTInt nyNunOf Partitions
Indicates the number of 4k partitions the load was broken into

3-37 305-CD-042-001

EcTInt nySi zeOf LastPartition
Indicates the size of the last partition

EcTlint nySi zeO Load
Indicates the size of the entire load

FOSTi mel nt erval nyW ndowi nt er val
Indicates the recommended uplink window

FmACActivity
cl ass FmACActivity
Responsible for expanding an activity into a group of command based on the stored activity definition

Public Functions

RWDI i st Col | ect abl es ExpandActi vity(FoScActivity&)
This operation does the expansion of each activity

FmExProcedure

cl ass FnExProcedure
responsible for the expansion of procedures

Public Functions

EcTl nt ExpandProcedure(RADI i st col | ect abl es)
Performs the expansion of a procedure and adds the commands to the DAS expanded command list

RW i nme Get ExecTi ne()
Returns the value of MyExecTime
Private Data
RWIi ne MyExecTi ne
Time of the execute procedure command
RWSt ri ng MyFi | enanme

Filename of the procedure to be executed
FMEXRTS
cl ass FnEXRTS

responsible for the expansion of an RTS

Public Functions

EcTl nt ExpandRTS(RWD i st Col | ect abl es, RWD i st Col | ect abl es)
This operation expands the RTS into a set of space directives

3-38 305-CD-042-001

FmMnDirectiveList
class FnmivhDirecti veli st

List of FoEcDirectives

Base Classes
public RWD i st Coll ectabl es

Public Functions

EcTVoi d Creat eExpandedLi st (FoScActi vityList)
Expands the list of activitiesinto alist of directives

FoMsCMBSt at us Fi ndConst rai nt s(voi d)
Calls the necessary operations to perform constraint checking on the expanded directive list

EcTVoi d MergeWt hLi st (const RWD i st Col | ect abl es)
Merges an input list into the directive list
Private Data

EcTint nyld
DASid that this command list was generated from

RWi me nyStartTine
Start time of expanded command list

RWIi ne nySt opTi ne
Stop time of expanded command list

FmScDAS
cl ass FncDAS

Base Classes
public FmvhDirectiveli st

Public Types

cl ass FnScDAS
A description of the class

Base Classes
public FmvnDirectiveli st

Public Functions

FoMsCMBSt at us Fi ndConstrai nt s(voi d)

Gets the buffer start time and the commands from the ground schedule then calls the base class operation to perform the
constraint checks

RWEl i st Col | ect abl es GetPartitions(const RWIi ne)

Calls the spacecraft model proxy to get the number of partitions the directive list must be broken into in order to fit into
the spacecraft buffer

3-39 305-CD-042-001

FmScConstCk
cl ass FnBcConst Ck

Directives to be constraint checked

Base Classes
publ i ¢ FrmScConmandLi st

Public Functions

EcTVoid MergeWthFilter(const RAD istCollectables)
Takes as input the expanded sorted command list and builds a filtered command list to be constraint checked

FoMsCMSStatus
cl ass FoMsCMSSt at us

status for processing

Private Data

EcTint nyld
Theid of this message.

RWCStri ng nyStat us
Pertinent information about the status object. Mostly used to explain why a process failed.

FoMsConflictinfo
class FoMsConflictlnfo

Base Classes
public RWCol | ect abl e

Private Data
RWCSt ri ng nmyCrdMhenoni ¢
The mnemonic of this command.
RWCStri ng nyConflictingCrd
The mnemonic of the command with which this command conflicts.
RWIi e nyConstrai nt Ti ne
The time at which the conflicting command is scheduled.

EcTint nyld

For aDAS, thiswill bean activity id. For RTSand procedures, thiswill betheline number of thiscommand inthe contents
file.

EcTl nt nySoft Har dFl ag
An indicator specifying a hard or soft constraint.

RWCSt ri ng myViol ationl nfo
Textual information concerning the violation.

3-40 305-CD-042-001

FmGsGroundData
cl ass FnGsGr oundDat a

Base Classes
public RWCol | ect abl e

Public Functions
EcTVoi d Del eteDirectives(const RWEl i st Coll ectabl es&)
Called by the Schedule Controller to delete certain directives from the Ground Schedule.
EcTVoid DeliverDirectives(const FmvhDirectiveli st &)
Called by the Schedule Controller to put the directives from a DAS into the Ground Schedule.

FmvhDi recti veLi st ReturnCCLi st (const RWIi nme&, const RWELi st Col | ect abl es&)
Called by the Schedule Controller to request alist of certain directives from the Ground Schedule.

Private Functions
EcTl nt Creat eConnection()
Creates a connection between this proxy and the Ground Schedule.
EcTVoi d DestroyConnecti on()
Destroys the connection between this proxy and the Ground Schedule.
RWCol | ect abl e Recei ve()
Receives an object by IPC from the Ground Schedule.
EcTVoi d Send(const RWCol | ect abl e&)
IPC's an object to the Ground Schedule.

FmMsStoreATCLoad

cl ass FnmvsSt or eATCLoad
class definition - This class represents an interface between the ATC Schedule and the Load Catalog. It uses IPC to relay in-
formation between this class and the Load Catalog. ATC Schedule sends information to this class via function calls.
Public Functions

EcTl nt CheckFor Load(ECTI nt)

Called by ATC Schedule to send a DAS Id to the Load Catalog and get back an integer status, indicating that the load
associated with this DAS Id has or has not been uplinked.

EcTl nt Creat eConnection()
Creates the two-way connection between this proxy and FmLdL oadCatal og.
EcTl nt Del et eLoads(const RWSl i st Col | ect abl es&)
Called by ATC Schedule to delete all loads on the input list. Returns a response.
EcTVoi d DestroyConnecti on()
Destroys the connection between this proxy and FmLdL oadCatal og.
EcTl nt Receive()
Receives an FOM sCM SStatus object from FmLdLoadCatalog via IPC and returnsiit.

EcTVoi d Send(const RWCol | ect abl e&)
Sends an object to FmLdLoadCatalog via | PC.

3-41 305-CD-042-001

EcTlnt StorelLoad(const FoLi ATCLoad&)
Called by ATC Schedule to send aload for storage. Returns a response.

FmMsValidateConstraints

cl ass FmvsVal i dat eConstraints
This class represents the interface proxy class between CM Sinternal subsystems and the FmCcCommandModel class. FmC-
cCommandM odel manages the command rule-based constraint checking.

Public Functions

EcTl nt Creat eConnection(void)

Establishes aconnection with FmCcCommandModel to receive constraint checking request from the schedul e controller
and the load catalog

EcTVoi d DestroyConnecti on(voi d)
Destroys the connection with FmCcCommandModel
FoMsCMBSt at us& Recei ve(voi d)
Receives the results of rule-base command constraint checking, FOMsCM SStatus

FoMsCVBSt at us& Send(const RWCol | ect abl e&)

Sends either aFmScConstCk command list from the schedul e controller or aFoEcDirectivelist created from an RTS|oad
contents file to the FmMCcCommandModel for rule-base command constraint checking

FoMsCMVBSt at us& Val i dat eCommands(const FnScConst Ck&)

FmScScheduleController invokes this function to send the DAS scheduled command list to be command rule-based con-
straint checked

FoMsCMBSt at us& Val i dat eRTS(const RACSt ri ng&, const RWCStri ng&)

FmLdLoadCatalog invokes this function to send the directory name and load name from the generate RTS load request
to be command rule-based constraint checked. Thisfunction createsthe FoCcDirectivelList to the FmCcCommandModel.

FmSmMapBuffer

cl ass FnSnmivapBuf f er

Thisclassrepresentstheinterface proxy class between CM Sinternal subsystems and the FmSmSpacecraft class. FmSmSpace-
craft manages the buffer modeling for ATC, RTS and table buffers and the ground

i magi ng.
Public Functions
EcTl nt Creat eConnecti on(EcTVoi d)
Establishes a connection with FmSmSpacecraft to receive requests from the schedule controller and the load catalog

EcTVoi d Del et eBuf f ers(const RWSl i st Col | ect abl es&)

Request received from load catalog when a late change as been successfully processed. The predicted buffer models as-
sociated with all of the generated |oads are deleted. Instantiates an FmMsDeleteATCBuffers object.

EcTVoi d Destroy(EcTVoi d)
Destroys the connection with FmCcCommandM odel

Fmvs ATCBuUf f er I nf o Get ATCBuUf St art Ti ne(const FoECTi ne&)

Requeststhe start time of the 1st command in the buffer that will be used to model the newly received DAS or late change
request

RWEl i st Col | ect abl es& MapATC(const FmvhDirectiveli st& const FOSTi nel nter-
val & const FoEcTi me&, const EcTlnt&)

3-42 305-CD-042-001

Request FmSmSpacecraft to map the command list into an ATC buffer model. Instantiates an FmMMsSATCMapRequest
object to be sent to FmSmSpacecraft.

RWEl i st Col | ect abl es& MaplLat eChange(const FnivhDirecti veli st& const FOS-
Ti mel nterval & const FoEcTi ne& const EcTI nt &)

Requests FmSmSpacecraft to map the late change command list into the correct buffer model. Instantiatesan FMMSATC-
MapRequest object to be sent to FmSmSpacecraft.

RWSI i st Col | ect abl es& Recei ve(EcTVoi d)

Receives the response from FmSmSpacecraftModel It receives either A list of FmMsLoadData objects or a
FmMsATCBUufferInfo object

EcTVoi d Send(const RWCol | ect abl e&)

Sends messages to FmSmSpacecraftModel. Sends FmMMsATCM apRequest, FmMsDeleteATCBuffers, or FmMsUpdate-
Buffer.

EcTVoi d Updat eBuf f er (const FmvsUpdat eBuf f er &)
Request the buffer be updated to a new status

FmMsLoadData

cl ass FmvsLoadDat a
Thisclassissent to CMS Schedule controller. Fromthisclassthe ATC load directivesare used to create the ATC binary uplink
load. If the DAS needs to be partitioned multiple FmMsL oadData objects are returned to CM S Schedule Controller.
Private Data

EcTInt nyDirListAddr

Thisisthe next directive in the processing list. If thelist is completely processed theis set to NULL. If thelist requires
further processing, that isthe DAS/ ATC load need to be partitioned, it is set to the next directiveinthelist. Thisiswhere
the partitioned load needs to begin.

FmvhDi recti veLi st nyDirectiveli st

Thisisthe portion of the DAS/ATC directive list being currently processed that will be used to create the ATC binary
uplink load It may be all of the DAS or part of the DAS if the ATC buffer cannot hold all of the commands - that isthe
DAS isbeing partitioned

RWCSt ri ng nyLoadNane
Thisisthe load name create by ATC buffer model

FOSTi nel nt erval nyUpl i nkW ndow
Thisisthe uplink window for the ATC uplink directive list

FoLiATCLoad
cl ass FoLi ATCLoad

class definition

Base Classes

public FoLi Load

Public Functions

EcTl nt Buil dUpli nkLoad()
Builds the uplinkable load and the load report.

EcTl nt ConposeReport ()
Fillsin the attributes of the report and storesit.

3-43 305-CD-042-001

FoMsCVBSt at us& Cr eat eLoad(const FmivhDi recti veli st &
Populates the |oad object and its aggregate parts.

Private Data

FmvhDi recti veLi st nyCriti cal Cormands
The critical commandsin the load.

EcTint nyCritical Fl ag
An indicator of critical commands existing in the load.

EcTl nt nyDASId
The DASid for which the load is generated.

FmvhDi recti veLi st nyDirectiveli st
Theentirelist of directives that constitute the load.

FoLi ATCLoadReport* myLoadReport
A pointer to the load report for thisload.

FoLiATCLoadReport
cl ass FoLi ATCLoadReport

class definition

Base Classes

publi ¢ FolLi LoadReport

Private Data
FmvhDi recti veLi st nyComandLi st
The entire list of commands which constitute the load.

FrmivhDi r ecti veLi st nyCont r ol Conmands
The control commands contained in the load.

RWIi e nyStartTi ne
Thetime of the first command in the load.

RWIi me ny St opTi ne
the time of the last command in the load.

FoLiLoad
cl ass FolLi Load

Base Classes
public RWCol | ect abl e

Public Functions
virtual EcTlInt Buil dUplinkLoad(const FoLi Loadl nageg&)
Builds the uplinkable load and the load report.

FoMsCMVBSt at us& Cr eat eLoad(const FoMsLoadGenReq&)
Reads in the file from the request and creates the load.

3-44 305-CD-042-001

EcTl nt Gener at eLoadl mage(const FoLi LoadCont ent s&)

Generates the binary for the load and storesitin afile.

Private Data

RWCSt ri ng nyDestination
The destination on the spacecraft for the load.

RWCString nyDirectory

The directory where the load contents file from which the load is generated exists.

FoLi LoadCont ents nyLoadCont ents
The load contents object.

RWCSt ri ng myLoadNane
The name of the load.

EcTl nt nyLoadSi ze
The size of the load in bytes.

EcTI nt myNunber O Pi eces
The number of uplink loads for this load.

RWCSt ri ng nmyOaner
Theid of the owner of the load.

EcTlnt nySi zeOf Last Pi ece
The number of bytes of the last uplinkable load.

EcTl nt nySpacecraftld
The id of the spacecraft for which the load is valid.

FoMsCMBSt at us ny St at us
The processing status of the load.

RWEIl i st Col | ect abl es nmyUpl i nkLoads
The uplinkable portions of the load.

FOSTi mel nt erval nyUpl i nkPeri od
The uplink period of the load.

FoLiLoadReport

cl ass FoLi LoadReport
class definition

Base Classes
public FoDsFile

Private Data

EcTl nt nyEndLocati on
The last memory location used by the load.

RWCSt ri ng nyLoadNane
The name of the load for which this report was written.

EcTInt nySi ze
The size of the load in bytes.

3-45

305-CD-042-001

EcTInt nyStartlLocation

The first memory location used by the load.
RWCSt ri ng nyType

the type of the load for which this report was written.
FOSTi mel nt erval nyUpl i nkPeri od

The uplink window of the load for which this report was written.
FoLiUplinkLoad
cl ass FoLi Upl i nkLoad

class definition

Base Classes
public FoDsFile

Public Functions
EcTl nt Buil dLoad(const FolLi Loadl mage&)

Generates the CRC for the load, puts the load into packets, and stores the load with DMS.

EcTl nt* Buil dLoadDat a()
Sets the command destination information and fills in the command data.

EcTlI nt* CCSDSW ap()
Generates the packets for the load.

FoScActivity

cl ass FoScActivity
Defines one activity in the Activity List

Private Data

RWEt ri ng nmyAct Def Namre
Name of the Activity to be expanded

EcTInt nyActld
Activity ID

RWEIl i st Col | ect abl es myPar anVal uelLi st
Parameter values to be substituted into the appropriate commands

RWIi e nyStartTine
Start time of the Activity

RWIi e ny St opTi e
Stop time of the Activity
FoScActivityList

cl ass FoScActi vityLi st
Activity List classreceived from PAS

3-46

305-CD-042-001

Private Data

EcTint nyld
Activity list ID (DASid)

FoScDetActSched

cl ass FoScDet Act Sched
Defines a Detailed Activity Schedule (DAS)

Base Classes

public FoScActivityLi st

Protected Data

RWSl i st Col | ect abl es nmyOr bi tal Event
List of orbital events associated with the input activity list

RWi me nyStartTine
Start time of the Activity List

RWIi ne nySt opTi ne
Stop time of the Activity List

FOSTi mel nt erval nyUpl i nkW ndowReq
Requested uplink window for the load to be generated from the Activity List

RW&t ri ng nyVer si on
Version number

FoScLateChange

cl ass FoSclLat eChange
Defines a Late Change Activity List

Base Classes
publ i ¢ FoScDet Act Sched

Private Data

RWi nme nyStartTinme
Start time of the Late Change Activity List

FoScOrbitalEvents

cl ass FoScOrbital Events
Defines each orbital event associated with aDAS

Private Data

RWEt ri ng myNane
Name of the orbital event

RWIi me nyTi me
Time of the orbital event

3-47

305-CD-042-001

FoScSimulationSched
cl ass FoScSi nul ati onSched

Defines asimulation Activity List
Base Classes

public FoScActivityLi st

Private Data

EcTlnt nmyATCBufferStart
ATC buffer start time to be used when partitioning the load

RWIi nme nyStart Ti ne

Start time of the simulation Activity List
RWIi ne nySt opTi ne

Stop Time of the Activity List
RWSt ri ng nyVer si on

Version number of the Activity List
FoScUplinkActivity
cl ass FoScUpl i nkActivity
stp/omt class definition 3290603
Base Classes
public FoScActivity

Protected Data
RWst ri ng nyLoadNane

Load name for the associated uplink request activity list
FoEcComment

cl ass FoEcConment
Defines a comment directive

Base Classes
publi ¢ FoEcG oundDirective
Private Data
RWCSt ri ng myKeyword
Keyword indicating directive is a comment
FoEcDeltaTime

cl ass FoEcDel t aTi nme
Defines Deltatime

Base Classes

public FoEcTi me
DeltaTime

3-48

305-CD-042-001

Private Data
EcTChar nyPl usM nusSi gn
Indicates whether the delta time is positive or negative. Used for computing absolute time.

EcTChar nyStart St opl ndi cat or
Indicates whether the delta time is associated with the start or stop time of the activity

FoEcDirective

cl ass FoEcDirective
Defines an individual directive

Public Functions

voi d CheckSyntax(EcTInt errcode)
Checks to ensure the syntax of the directiveisvalid

voi d Execut e(voi d)

voi d LogDirective(void)
Logsthedirective

voi d Parse(void)
Parses the directive

voi d Updat eSt at us(voi d)
updates the status of the directive

Private Data
EcTint nyActivityld
Id of the activity that this directive was expanded from
EcTl nt nyDASI d
id of the DAS that this directive was expanded from
FuTdDat aSour ce* nyDat aSour cel d
id of the originator of the directive
RWCString nmyDi rectiveText
text describing this directive
FuGsGroundScri pt Control * nmyGndScri pt
ground script for the associated directive
EcTl nt nyLi neNum
line number from the associated expansion
RWEl i st Col | ect abl es nyPar anet ers
list of parameters associated with this directive
FoCl Procedure* nyProc
indicates which procedure this directive was expanded from
Fud Pr ocCont r ol Wn* myProcCont r ol
enum myProcFl ag
indicates whether this directive was expanded from a procedure

3-49 305-CD-042-001

enum nySour ce
source of the directive

EcTl nt nySt at us
status of the directive
Private Types
enum

Enumerators
gs
manual
proc

enum

Enumerators

n
y

FoEcGroundDirective
cl ass FoEcG oundDirective

Defines an individual ground directive

Base Classes

public FoEcDirective

Private Data

RWCSt ri ng nyKeyword
Defines the keyword for the ground directive
FoEcLabel
cl ass FoEcLabel
Base Classes
publi ¢ FoEcG oundDirective

Private Data

RWCSt ri ng nyName
Name of the label associated with the ground directive

EcTInt nyOif set

FoEcRTCommand
cl ass FoEcRTCommand

Defines areal time command directive

3-50

305-CD-042-001

Base Classes

publ i c FoEcGroundDirective

Private Data

RVBIi t Vec nyBi nary
Binary data associated with the real time command

RWCSt ri ng myMienoni ¢
Mnemonic which defines the real time command

FoEcSpaceDirective

cl ass FoEcSpaceDirective
Defines a spacecraft directive
Base Classes

public FoEcDirective

Public Functions
EcTInt FigureBinary()
Generates the binary representation of this directive.
Private Data

RVBIi t Vec nyBi nary

The binary representation of this directive, the format of which is described by the ICD.

EcTint nylnhibitld
The group id indicating what resource this directive could have an effect on.

RWCSt ri ng nyMhenoni ¢
The mnemonic for the directive.

EcTI nt nyRTSFI ag
An indicator specifying if thisdirective is part of an RTS or not.

FoEcSpaceTime

cl ass FoEcSpaceTi ne
class definition

Base Classes

public FoEcTi me

Public Functions

EcTFl oat Get Conversi onFact or ()
Returns the conversion factor.

EcTVoi d Set Conver si onFact or (ECTFI oat)
Sets the conversion factor to the input value.
Private Data

EcTFl oat nyConver si onFact or
The numeric factor which converts actual seconds to spacecraft seconds.

3-51

305-CD-042-001

FoEcTime

cl ass FoEcTi ne
class definition

Base Classes
public RWIi ne

Public Functions

RWIi me& Get Epoch()
Returns the epoch.

EcTVoi d Set Epoch(const RWi ne&)
Sets the epoch to the input time.
Private Data
RWIi e nyEpoch

The epoch upon which thetimeisbased. Timeiscomputed asthe number of seconds since the epoch. The default epoch
for RWTimeis Jan. 1, 1901 at 00:00:00.

3-52 305-CD-042-001

3.3 Ground Schedule

The Ground Schedule is a persistent process that runs on the FOS Data Server. It maintains a
continuous schedule of ECL directives, including planned real-time commands, ground
configuration directives, and comments representing spacecraft stored commands and orbital
events. Listsof directivesto be added to the continuous schedule are sent to Ground Schedul e by
Schedule Controller. In response to alate change request from PAS, Schedule Controller may also
request the deletion of directives with a particular DAS id from the continuous schedule.

Ground Schedule usesits continuous list of directivesto generate responses to various requests. In
response to a constraint check list request, Ground Schedule providesalist of directivesfor a spec-
ified time range to Schedule Controller. In response to a ground script request from FUI, Ground
Schedule generatesaground script, whichisatimeordered list of directives, for the requested time
range and storesit with DMS. In response to an expected state request, Ground Schedul e generates
an expected state table for a specified time and returns it to telemetry. An expected state table is
based on scheduled stored and real-time commands and consists of alist of telemetry parameter
ids and their predicted values.

Ground Schedule is also responsible for generating the integrated report. This report is generated
automatically whenever aDAS s processed and includes all scheduled ECL directives and orbital
events for the time span of the previous Detailed Activity Schedule.

3.3.1 Ground Schedule Context

Figure 3.3-1 shows the context diagram for the Ground Schedule. The Ground Schedule has four
interfaces.

CMS Schedule Controller
e Ground Schedule receives adirective list to be merged into the existing schedule.
¢ Ground Schedule receives arequest to delete certain directives from the schedule.
« Ground Schedule receives arequest to return alist of certain types of directives.
e Ground Schedule sends adirective list in response to alist request.

e Ground Schedule receives the Command Execution Verification (CEV) definitions
upon initialization.

3-53 305-CD-042-001

T00-¢70-AdD-50€

S Directives
CMS Directives, :
Schedule - Delete Request, Expected State Table, 5] Data
Controller Directive List Request Ground Script, Management
ontrofle Integrated Report
A This System
CMS CEV Definitions,
i | Ground Schedule Directives,
Directive List Expected State Table
Ground Script Expected State Table
Generation Status
User ; Expected State Table
Interface Ground Script Request Request Telemetry

Figure 3.3-1. Ground Schedule Context Diagram

« Ground Schedule receives its schedule of directivesin afile upon initialization.
« Ground Schedule receives an Expected State Table file upon initialization.

« Ground Schedule stores its schedule of directives upon a schedule change (addition or
deletion).

« Ground Schedule stores an Expected State Table whenever one is generated.
« Ground Schedule stores a Ground Script whenever one is generated.
« Ground Schedule stores an Integrated Report whenever one is generated.
Telemetry
« Ground Schedule receives arequest to generate an Expected State Table.
« Ground Schedule sends an Expected State Table when one is generated upon request.

« Ground Schedule receives arequest to generate a Ground Script.
« Ground Schedule sends a status indicating the storage location of the Ground Script.

3-55 305-CD-042-001

3.3.2 Ground Schedule Interfaces

Table 3.3.2. Ground Schedule Interfaces

Interface Interface Class Interface Class Service Service | Frequency
Service Description Provider User
Delete FmGsGroundData Proxy between CMS: CMS: 1/month
Directives CMS:Schedule Controller Ground Schedule
and CMS: Ground Schedule. | Schedule Controller
Requests deletion of
directives from the Ground
Schedule
Add FmGsGroundData Proxy between CMS: CMS: 1/day
Directives CMS:Schedule Controller Ground Schedule
and CMS: Ground Schedule. | schedule Controller
FmMnDirectiveList List of directives to add to the
Ground Schedule.
Return FmGsGroundData Proxy between CMS: CMS: 1/day
Directive CMS:Schedule Controller Ground Schedule
List and CMS: Ground Schedule. Schedule Controller
FmGsListRequest Containslistof DASid'sand a
time. All directives in the
Ground Schedule that occur
after the time and that have
DAS Id's that are in the list will
be returned.
FmMnDirectiveList List of directives.
Generate FmMsGenerateOpAi | Proxy between CMS:Ground | CMS: FUI: 3/day
Ground ds Schedule and FUI Ground Ground
Script Schedule Script
Controller
FoMsGsGenReq Request for Ground Script to
be created for given times.
FoGsStatus Results of Ground Script
Generation.
Generate FmMsExpectedState | Proxy between Ground CMS: TLM: 1/contact
Expected Table Schedule and TLM. Ground FtTISCStat
State Table Schedule eCheck
FoMsTableRequest Request that a table be
generated for a given time.
FoTIExpectedState List of FoTIExpectedValue
objects.
FoTlExpectedValue Expected value for a
particular parameter id.

3-56

305-CD-042-001

3.3.3 Ground Schedule Object Model

Figure 3.3-2 shows the first page of the object model for the Ground Schedule. Ground Schedule
is an independent process which maintains the scheduled directives. Figure 3.3-3 shows the class
FmMnDirectiveList and the entire FoEcDirective structure. FmScGroundSchedule is responsible
for adding directives to and deleting directives from its list and for generating the Ground Script,
Expected State Table, and Integrated Report based on the directive list. It has four interfaces that
are used to allow other process access to the schedule. FmScGroundSchedule generates an
FoGsGroundScript, which is derived from FoDsFile. Figure 3.3-4 shows the classes which are
derived from FoDsFile. FOGSCEV Table is generated by the Ground Schedule upon initialization
using information obtained from DMS. The CEV Table contains many FoGsCEVDataField
objects. Each Data Field contains information about one CEV pid. The CEV Table is used to
generated an Expected State Table.

FoTIExpectedState is the Expected State Table generated using the CEV Table.
FoTIExpectedState consists of one to many FoTIExpectedVaue objects, each of which contain
information about one parameter id. The FoTIExpectedState is updated based on a
FoMsTableRequest received from the proxy FmMsExpectedStateTable. This proxy is how TLM
requests the Ground Schedule to generate an Expected State Table for a certain time.
FoRplntegratedReport is a file object that is generated whenever an expanded Detailed Activity
Schedule is received from the Schedule Controller through the proxy FmGsGroundData. This
proxy also sends a FmGsListRequest to the Ground Schedule, requesting a portion of the schedule
be returned to the Schedule Controller.

The class FmMsGenerateOpAids is an interface proxy with FUI. It receives a FOMsGsGenReq
object from FUI, whichis used to request that a Ground Script covering a certain period of time be
generated. Ground Schedul e sendsto the proxy a FoGsStatus, indicating the storage | ocation of the
Ground Script and a brief status message.

3.3.4 Ground Schedule Dynamic Model

The Ground Schedule dynamic model consists of the following scenarios:
« Ground Schedule Initiaization
« Expected State Table Generation

3-57 305-CD-042-001

8G-€

T00-¢70-AdD-50€

i CMS proxy

with FUI

FoGsStatus

myDirectory: RWCString
- myFilename: RWCString

- myStatus: EcTInt is sent from

FoRplntegratedReport

- myDirectiveList: FmMnDirectiveList

communicates,

FmMsGenerateOpAids

- CreateConnection(): EcTInt
- DestroyConnection() EcTVoid

Ground Schedule | + GenerateGndScript(const FOMsGsGenReq&FoGsStatus

- Receive() : FOGsStatus
- Send(const FoMsGsGenReq&)EcTVoid

——<¢

created by——— communicates with

| sendsto ___ | - myProcExpFlag: EcTInt
Ground Schedule - myScld : RWCString
- myStartTime: EcTLongInt
- myStopTime: EcTLongInt
=]

FoMsGsGenReq

- myDirectory: RWCString
- myFilename: RWCString

reates from file———

FoGsCEVTable

myCEVdata: RWSlistCollectables

FmMsExpectedStateTable

- CreateConnection(): EcTInt

- DestroyConnection(} EcTVoid

+ FetchTable(): FoTIExpectedState&

- Receive() : FoTIExpectedState

- Send(const FoMsTableRequest&)EcTVoid

CMS proxy
with TLM sends to
Ground
Schedule
=]
FoMsTableRequest

- myTime : RWTime = now

i + LookUp(const RWCString&) FoGsCEVDataField&
FmScGroundSchedule
T myCEVTable: FOGSCEVTable bk
- myEventPtr: FOEvEvent * FoGsCEVDataField
- myExpectedState: FoTIExpectedState
- mySchedule: FmMnDirectiveList 1+ - myCEVpid: EcTInt
- myCmdMnemonic: RWCString
+ CreateEST(const RWTime&) FoTIExpectedState& - myHighValue: EcTInt
+ CreateGroundScript(const FoOMsGsGenReq&JFoGsStatus generates - myLowValue: EcTint
+ CreatelntegratedReport() EcTVoid
+ DeleteDirectives(const RWSlistCollectables&EcTVoid EJ
+ HandleMessage(): EcTVoid
+ Initialize() : EcTVoid FoGsGroundScript
+ ProcessDAS(const FMScDAS&)ECTInt T mvDirectives: FmMnDirectiveList
+ ProcessOrbitalEvents(const RWSlistCollectables&EcTVoid Y o ;
+ ProcessUplinkSched(const FmScUplinkSched&EcTVoid) mySpace_crafltId. RWCStr|ng
+ ReturnCClList(const FmGsListRequest&FmMnDirectiveList) myStartT_lme: RWT!me
- myStopTime: RWTime
& communicates {shared - FUI,FMN,FDM}
with
cre::re%snd FmMnDirectiveList = | CMS proxy with Schedule Controller
CONTINUED FmGsGroundData

+ +

FoTIExpectedState

FoTIExpectedValue

- myHighValue: EcTInt
- myLowValue: EcTInt

- myCEVTable: FOGsCEVTable* R
- myData : RWSlistCollectables +

o——> - myTime : RWTime _

- myPID: EcTInt

+ + + +

Compare(const FoPsClientBuffer&)EcTVoid
GetPids() : RWSlistCollectables

Replace(const FoPsClientBuffer&)EcTInt
UpdateTable(const RWDIistCollectables&EcTInt

CreateConnection(): EcTInt

DeleteDirectives(const RWSlistCollectables&EcTVoid
DeliverDirectives(const FmMnDirectiveList&EcTVoid
DestroyConnection(} EcTVoid

Receive() : RWCollectable

ReturnCCList(const RWTime&, const RWSListCollectables&mMnDirectiveList
Send(const RWCollectable&) EcTVoid

I
sends
to E

Ground |
Schedule

FmGsListRequest

myDASList: RWSlistCollectables
myTime : RWTime

'—°|:
[

Figure 3.3-2. Ground Schedule Object Model - page 1

— =
FmMnDirectiveList PER— FoEcParameter
- myld : EcTInt N n
- myStartTime : RWTime O e myActivityld : EcTInt ~ zi\’\;‘anlizomc
- myStopTime : RWTime - myConstraints : RWSlistCollectables
- myDASId : EcTInt
+ FmMnDirectiveList(FpCrActivityList) EcTVoid - myDataSourceld : FuTdDataSource* = NULL
+ CreateExpandedList(FpCrActivityList) EcTVoid - myDirectiveText: RWCString
+ FindConstraints(): FOMsCMSStatus - myGndScript : FuGsGroundScriptControl* =]
+ MergeWithList(const RWDlistCollectables) - myLineNum: EcTInt "
" FoScActi Inf
- myParameters: RWSlistCollectables OScActivitylnfo
- myProc : FoClProcedure* - myActivityld : EcTInt
- myProcControl : FuClProcControlWin* < - myNumberSpaceCommands: EcTInt
myProcFlag : enum {y,n}
- mySource : enum{manual,proc,gs}
- myStatus : EcTInt
=]
- + CheckSyntax(EcTInt errcode)
FoEcTime + Execute()
- myEpoch : RWTime + LogDirective()
+ Parse()
+ UpdateStatus()
& B = B
FoEcDeltaTime irecti FoEcSpaceDirective
FoEcSpaceTime FoEcGroundDirective p
- - myPlusMinusSign: EcTChar ~ myKeyword : RWCStrin - myBinary : RWBitVec
w - myConversionFactor: EcTFloat = 1.024 - myStartStopindicator: EcTChar Ve 9 - myCriticalFlag: EcTInt
[- mylnhibitid : EcTInt
a - myMnemonic : RWCString
(o] =) - myRTSFlag : EcTInt
FoEcAbsoluteTime
FigureBinary()
& | B fal &=
| FoEcElself J FoECElse FoEcRTCommand FoEcComment
- myBinary : RWBitvec - myKeyword : RWCString
= = - myMnemonic : RWCString
FoEcEndProc FoEcEndIf
=] ||
FoEcOrbitalEventDirective FoEcProcedureCall
i =
FoEcUplinkCommand FOECExecRTS
= = &
FoEcLabel FoEcLogicalExp FoEcWait
- migg’;‘; : Egﬁf‘””g - myOperator : EcTint + seBit(unsigned int): EcTVoid
+ Evaluate(FuClLiteral valuel, FuClLiteral value2) EcTInt + FestBlt(unﬂgned mt); ECTI.m "
+ Jump() : EcTVoid + Evaluate(FuClLiteral valuel): EcTInt + indexRangeErr(unsigned int): EcTint

T00-¢¥0-dD-S0E

Figure 3.3-3. Ground Schedule Object Model - page 2 - Directives

09-€

T00-¢70-AdD-50€

FoDsFile

- myPath: RWCString
myFilename: RWCString

Close(fileptr). Ectint
Open(file,path,action)fileptr
Read(fileptr,recptr,size)Ectint
Write(fileptr,recptr,size)Ectint

+ + + +

{shared - FDT\ with all S/S}

/N

FoGsGroundScript i

FoRplIntegratedReport

myDirectives. FmMnDirectiveList

mySpacecraftld RWCString - myDirectiveList FmMnDirectiveList

myStartTime: RWTime

myStopTime: RWTime

{shared - FUI,FMN,FDM}

Figure 3.3-4 . Ground Schedule Object Model - Files

« DASProcessing
« Ground Script Generation

3.3.4.1 Ground Schedule Initialization Scenario

3.3.4.1.1 Ground Schedule Initialization Abstract

The Initialization Scenario describes how the Ground Schedule processisinitialized. The Ground
Schedule ingests the information it needs from DMS.

3.3.4.1.2 Ground Schedule Initialization Summary Information
Interfaces:

- DMS
Stimulus:

e Ground Schedule processis started.
Desired Response:

e Scheduleisrestored from DMS

« Expected State Tableisrestored from DMS

« CEV Tableisrestored from DMS
Pre-Conditions:

« DMSisaccessible
Post-Conditions:

« Ground Schedule is ready to process requests.

3.3.4.1.3 Ground Schedule Initialization Description

Figure 3.3-5 shows the Ground Schedule Initialization event trace. When the initialize function is
called, Ground Schedul e requests from DM S the datafile containing the schedule. The datafileis
returned, and Ground Schedule recreates its schedule from the information in the file. Ground
Schedule requests from DM S the datafile containing the CEV Table. Thedatafileisreturned, and
Ground Schedule createsits CEV Tablefrom theinformationinthefile. Ground Schedul e requests
from DM Sthe datafile containing the Expected State Table. The datafileisreturned, and Ground
Schedule creates its Expected State from the information in the file.

3-61 305-CD-042-001

c9-€

T00-¢70-AdD-50€

FmScGroundSchedule

FoGsCEVTable FoTlExpectedState FmmnDirectiveList ~ FoDsFileAccessor
requests difective file
d > retrieves >
directive file
< returns
directive file
<< returns directive file
populates from directive fi >
requests CEV definitions file >>
| retrieves CEV >
definitions file
< returns CEV ___|
definitions file
<< returns CEV|definitions file
| populates from >
CEV file
requests Expected State Table file
| retrieves EST >
file
< returns EST
file
<< returns Expected State Table file
——populates frgm EST file———>>

Figure 3.3-5. Ground Schedule Initialization Event Trace

DMS

3.3.4.2 Expanded DAS Processing Scenario

3.3.4.2.1 Expanded DAS Processing Abstract

The Expanded DAS processing scenario describes how a Detailed Activity Scheduleis processed
in the Ground Schedule when one is received from the Schedule Controller.

3.3.4.2.2 Expanded DAS Processing Summary Information
Interfaces:
« Schedule Controller
- DMS
Stimulus:
e Receipt of adirectivelist from Schedule Controller
Desired Response:
» Directives merged into existing schedule
» Integrated Report generated and stored with DM S

Pre-Conditions:
e Ground Schedule software has been initialized
Post-Conditions:
» Schedule checkpointed with DM S
e The Ground Schedule's most recent Expected State Table is updated

3.3.4.2.3 Expanded DAS Processing Description

Figure 3.3-6 shows the Expanded DAS Processing Event Trace. The Ground Schedule receives a
directive list from the internal interface proxy FmGsGroundData. Thisis a proxy with Schedule
Controller. The Ground Schedule adds the directivesin the directive list to its existing schedule. It
then generates an Integrated Report for the previous DA Sreceived and storesit with DM S. Ground
Schedule creates an Expected State Table based on the current time and stores it with DMS.
Finally, the Ground Schedule stores its schedule with DMS.

3.3.4.3 Delete from Schedule Scenario

3.3.4.3. Delete from Schedule Abstract

The Delete from Schedule scenario describes how directives are deleted from the Ground Sched-
ule. Directives need to be deleted whenever a L ate Change Detailed Activity Scheduleisreceived
from Planning and Scheduling.

3-63 305-CD-042-001

79-€

T00-¢70-AdD-50€

FmScScheduleController

calls

| DeliverDirectives() >

{CMS proxy with
Ground Schedule}

FmGsGroundData

I— sends directives —>{

FmScGroundSchedule

]

FoRplIntegratedReport

FoTIExpectedStateTable

FoTIExpectedValue

DMS

adds
directives
to
schedule
creates >
stores Integrgted Report
sends difectives ——————=>>
for each
directive updates >
I<<—returns sufcess status

stores Expectef State Table

stores sghedule

Figure 3.3-6. Expanded DAS Processing Event Trace

3.3.4.3.2 Delete from Schedule Summary Information
Interfaces:

« Schedule Controller
Stimulus:

« Receipt of adelete request from the Schedule Controller
Desired Response:

 Directives specified in request deleted from Ground Schedule
Pre-Conditions:

« Ground Schedule softwareisinitialized

e Ground Schedule is populated with directives
Post-Conditions:

« Scheduleis checkpointed to DMS

3.3.4.3.3 Delete from Schedule Description

Figure 3.3-7 shows the Delete from Schedule event trace. A delete request is received from Sched-
ule controller through the proxy FmM sGroundData. Ground Schedul e determineswhich directives
should be deleted based on the DAS Id's in the request. All directives having a DAS Id which is
listed in the request are deleted. Ground Schedule stores the schedule with DM S as a checkpoint
file.

3.3.4.4 Expected State Table Generation Scenario

3.3.4.4.1 Expected State Table Generation Abstract

The Expected State Table Generation scenario describes the generation of an Expected State Table
upon request from the Telemetry subsystem.

3.3.4.4.2 Expected State Table Generation Summary Information
Interfaces:
e TLM
- DMS
Stimulus:
« Receipt of a FoMsTableRequest from TLM
Desired Response:

3-65 305-CD-042-001

99-€

T00-¢70-AdD-50€

FmScScheduleController FmScGroundSchedule

{CMS internal proxy}
FmMsGroundData

request deletion ——=>

sends delete
request via IPC =

DMS
delete
directives
store >
schedule

Figure 3.3-7. Delete from Schedule Event Trace

« Expected State Table sent to TLM
Pre-Conditions:
« Ground Schedule software has been initialized
« The schedule has been populated with directives
e A previously generated Expected State Table exists
Post-Conditions:
e The Ground Schedule's most recent Expected State Table has been updated

3.3.4.4.3 Expected State Table Generation Scenario Description

Figure 3.3-8 shows the Expected State Table Generation Event Trace. The Ground Schedule
receives a FoMsTableRequest from the interface proxy class FmM sExpectedStateTable. Ground
Schedul e uses the time in the request to create an FOTIExpectedState object based on a previously
generated table. Ground Schedule determines which directives from its schedule will effect the
table and passes them to the FOTIExpectedState. For each directive passed in, FOTIExpectedState
looks up the command mnemonic in its CEV Table and updates the appropriate
FoTIExpectedVaue. When all of the directives have been looked up, Ground Schedule sends the
Expected State table to the interface proxy. Finaly, Ground Schedule stores the Expected State
table with DMS.

3.3.4.5 Ground Script Generation Scenario

3.3.4.5.1 Ground Script Generation Abstract

The Ground Script Generation scenario describes the generation of a Ground Script based on a
request sent to the Ground Schedule from FUI.

3.3.4.5.2 Ground Script Generation Summary Information
Interfaces:
- FUI
- DMS
Stimulus:
¢ Receipt of an FOMsGsGenReq from FUI
Desired Response:
e Ground Script generated and stored with DMS
« FoGsStatus sent back to FUI

3-67 305-CD-042-001

89-€

T00-¢70-AdD-50€

{CMS proxy with TLM}

TLM FmMsExpect

—— calls FetchTable() —>>

< returns Expected
State Table

edStateTable FmScGroundSchedule FoTIExpectedState ~ FOTIExpectedValue
— sends Table Request—>>
creates/
sends directives 2]
__§;>
for updates ——>>
each
directive

<Z—returns success status—

< sends Expected
State Table

saves

Expected State Table

DMS

Figure 3.3-8. Expected State Table Generation Event Trace

Pre-Conditions:
« Ground Schedule software has been initialized
« Schedule has been populated with directives
Post-Conditions:
s none

3.3.4.5.3 Ground Script Generation Description

Figure 3.3-9 shows the Ground Script Generation Event Trace. The Ground Schedule receives an
FoM sGsGenReq from the proxy FmM sGenerateOpAids. The Ground Schedule uses the informa-
tion in the request to determine which directives from the schedul e should be copied into a Ground
Script. The Ground Script is created with these directives and stored with DM S. Ground Schedule
creates an FoGsStatus object and indicates in it information pertaining to the generation. The
FoGsStatus is returned to the proxy, which returnsit to FUI.

3-69 305-CD-042-001

3.3.5 Ground Schedule Data Dictionary

FmGsGroundData
cl ass FnGs@G oundDat a

Base Classes
public RWCol | ect abl e

Public Functions
EcTVoi d Del eteDirectives(const RWHl i st Coll ectabl es&)
Called by the Schedule Controller to delete certain directives from the Ground Schedule.
EcTVoi d DeliverDirectives(const FmvwhDirectiveli st &)
Called by the Schedule Controller to put the directives from a DAS into the Ground Schedule.

FmvhDi recti velLi st ReturnCCLi st (const RWIi nme&, const RWELi st Col | ect abl es&)
Called by the Schedule Controller to request alist of certain directives from the Ground Schedule.

Private Functions
EcTl nt CreateConnection()
Creates a connection between this proxy and the Ground Schedule.
EcTVoi d DestroyConnecti on()
Destroys the connection between this proxy and the Ground Schedule.
RWCol | ect abl e Recei ve()
Receives an object by ipc from the Ground Schedule.

EcTVoi d Send(const RWCol | ect abl e&)
Ipc's an object to the Ground Schedule.

3-70 305-CD-042-001

T.-€

T00-¢70-AdD-50€

{CMS proxy with FUI}

User)
Interface FoMsGsGenReq FmMsGenerateOpAids FmScGroundSchedule
creates >>
———-sends Ground Script Request———>>

<<——etu

ns status

sends Ground Script S
Request

FoGsGroundScript FoGsStatus

creates

——sends directives——>>

>>1

Stq

res Ground Script

DMS

I<<—sends Status

create

Figure 3.3-9. Ground Script Generation Event Trace

FmGsListRequest
cl ass FnisLi st Request

This class represents the criteria for specifying which directives should be returned from the Ground Schedule. Only those
directives having aDAS Id in myDASL.ist and an execution time after myTime will be returned.

Base Classes
public RWCol | ect abl e

Private Data

RWEl i st Col | ect abl es nmyDASLI st
A list of DASId's.
RWi me nyTi nme
The time for specifying which directives should be returned.

FmMsExpectedStateTable
cl ass FniVsExpect edSt at eTabl e

Base Classes
public RWCol | ect abl e

Public Functions

FoTl Expect edSt at e& Fet chTabl e()
Called by TLM to request the generation of an expected state table.

Private Functions

EcTInt CreateConnection()
Establishes a connection between this proxy and the Ground Schedule. Returns TRUE is the connection was successful.

EcTVoi d DestroyConnecti on()
Removes the connection between this proxy and the Ground Schedule.

FoTl Expect edSt at e Recei ve()
Receives an Expected State Table from the Ground Schedule and returnsiit.

EcTVoi d Send(const FoMsTabl eRequest &)
Sends arequest to the Ground Schedule.

FmMsGenerateOpAids
cl ass FnivsGener at eQpAi ds

This class represents an interface between the Ground Schedule and FUI. Its purpose isto provide FUI with a meansto get
information from the Ground Schedule. This classis able to send and receive certain objects via an ipc mechanism.

Public Functions
FoGsSt at us Gener at eGhdScri pt (const FoMsGsGenReq&)
Send a generate ground script request object to the Ground Schedule and receives a status on the generation in return
Private Functions

EcTInt CreateConnection()
Establishes the connection between this proxy and the Ground Schedule

3-72 305-CD-042-001

EcTVoi d DestroyConnection()
Removes the connection between this proxy and the Ground Schedule
FoGsSt at us Recei ve()
Receives the ground script status object from the Ground Schedule and returns it

EcTVoi d Send(const FoMsGsCGenReq&)
Sends the Ground Script Request object to the Ground Schedule

FmScGroundSchedule
cl ass FnBcG oundSchedul e

This class represents the ground schedule. It isatime-ordered list of commands, representing seven operational days of the
spacecraft. The classis responsible for maintaining the list of commands, generating reports, generating ground scripts, and
creating and updating the expected state table.

Base Classes
public RWCol | ect abl e

Public Functions
FoTl Expect edSt at e& Creat eEST(const RWIi ne&)
Creates the expected state table object for a given time, adds it to myTableList, and writesit to afilein DMS.
FoGsSt at us CreateG oundScri pt (const FoMsGsGenRequest &)
Makes a FoGsGroundScript object from the schedule upon request. Stores the script to afile.
EcTVoi d Createl ntegrat edReport ()
Creates the integrated report. Whenever anew DAS is added to the schedule, areport is generated for the previous DAS.
EcTVoi d Del eteDirectives(const RWHl i st Coll ectabl es&)
Deletes al directives with the specified DASId from the schedule.
EcTVoi d Handl eMessage()
Handles al ipc messaging for the Ground Schedule.
EcTVoid Initialize()
Creates the empty schedule and table list. Populates the CEV Table.
EcTl nt ProcessDAS(const FnScDASE)
Addsthe DAS to the schedule. Creates an expected state table and an integrated report.
EcTVoi d ProcessOrbital Event s(const RWSIi st Col | ect abl es&)
Adds the orbital eventsto the ground schedule.
EcTVoi d ProcessUpl i nkSched(const FnScUpl i nkSched&)
Adds the uplink commands to the ground schedule.

FmvhDi recti velLi st & Ret ur nCCLi st (const FnGsLi st Request &)

Creates a specia list of directivesto use against aDAS for constraint checking. Thislist is given to the Schedule Con-
troller.

Private Data

FoGsCEVTabl e nyCEVTabl e
A table of Command Execution Verification records, used to create Expected State Tables.

FoEvEvent * nyEvent Ptr
A pointer to an FOEvEvent object.

3-73 305-CD-042-001

FmvhDi recti veLi st nmySchedul e
A doubly-linked list of FOEcDirectives.

FoTl Expect edSt at e nyExpect edSt at e
A table representing the state of the spacecraft at a certain point in time.

FoGsCEVDataField
cl ass FoGsCEVDat aFi el d

Base Classes
public RWCol | ect abl e

Private Data
EcTlint nmyCEVpid
A unique number identifying the telemetry parameter.

RWCSt ri ng nmyCndMhenoni ¢
The mnemonic of the command associated with the CEV pid.

EcTI nt nyHi ghVal ue
The highest possible value allowed for this datafield.

EcTl nt nmyLowval ue
The lowest possible value allowed for this datafield.

FoGsCEVTable
cl ass FoGsCEVTabl e

classdefinition - This class represents atable containing information about command execution verification values. Thetable
consists of anumber of data fields, each with the information about the CEV values.

Public Functions
FoGsCEVDat aFi el d LookUp(const RWCStri ng&)
Look in the table for the given command mnemonic, and return the data field having that command mnemonic.
Private Data

RWSI i st Col | ect abl es nmyCEVDat a
A list of FOGSCEV DataFields belonging with this table.

FoGsGroundScript
cl ass FoGsG oundScri pt

This class represents the ground script.
It is generated and stored as a file with DVB.
Base Classes
public FoDsFile

Private Data

FmvhDi recti velLi st nyDirectives
A list of directivesfor the Ground Script.

3-74 305-CD-042-001

RWCSt ri ng nmySpacecraftld
Theid of the spacecraft for which ground script is generated.

RWi me nyStartTine
The starting time of the ground script.

RWIi ne nySt opTi ne
The ending time of the ground script.

FoGsStatus
cl ass FoGsSt at us

Base Classes
public RWCol | ect abl e

Private Data
RWCString nyDirectory
The name of the directory where the Ground Script was stored.
RWCSt ri ng nyFi | enane
The filename of the Ground Script.

EcTl nt nyStat us
Textua information about the generation of the Ground Script, including any errors that were encountered,

FoMsGsGenReq
cl ass FoMsGsCGenReq

Base Classes
public RWCol | ect abl e

Private Data
RWCString nyDirectory
The name if the directory where the Ground Script should be stored.
RWCSt ri ng nyFil enane
The filename that the Ground Script should be given.
EcTl nt nyProcExpFl ag
An indicator of whether or not to include expanded procedures in the Ground Script.
RWCString nyScld
Theid of the spacecraft for the Ground Script.
EcTLongl nt nyStart Ti ne
The time at which the Ground Script should start, implemented as a number of seconds.
EcTLongl nt mySt opTi me

The time at which the Ground Script should end. If ho end timeis specified, the Ground Script will be generated up to
the last command in the Schedule.

3-75 305-CD-042-001

FoMsTableRequest
cl ass FoMsTabl eRequest

Base Classes
public RWCol | ect abl e

Private Data
RWIi e nyTi me
The time at which the Expected State Table should be generated. The default is now.

FoRplIntegratedReport

cl ass FoRpl nt egr at edReport
This class represents the integrated report.
It is generated frominformation in the G ound Schedul e and
stored as afilewith DMS.

Base Classes
public FoDsFile

Private Data

FmivhDi recti velLi st nyDirecti velLi st
A list of directivesfor the Integrated Report.

FoTIExpectedState
cl ass FoTl Expect edSt at e

class definition

Base Classes
public RWCol | ect abl e

Public Functions
EcTVoi d Conpare(const FoPsC i ent Buf f er &)
Compares the input table to this table, and puts the result of the comparison in an event message.
RWEl i st Col | ect abl es Get Pi ds()
Returns alist of pids that exist in this table.
EcTl nt Repl ace(const FoPsd i ent Buf f er &)
Replaces the values in this table with the values in the input table.

EcTl nt Updat eTabl e(const RWD i st Col | ect abl es&)
Updates the table using the CEV table and the input directives.

Private Data

FoGsCEVTabl e* myCEVTabl e

A pointer to the CEV table, gotten from the database by the Ground Schedule. The CEV tableis used to generate a new
Expected State Table.

RWSI i st Col | ect abl es& nyDat a
A list of datafields which hold all the information for for thistable.

3-76 305-CD-042-001

RWIi me nyTi me
The time at which this table was generated.
FoTlIExpectedValue
cl ass FoTl Expect edVal ue

class definition

Base Classes
public RWCol | ect abl e

Private Data

EcTI nt nyHi ghVval ue

The highest possible value acceptable for thisfield. It can be either an integer or afloat.

EcTI nt nyLowval ue
The lowest possible value accepted for thisfield. It can be either an integer or afloat.

EcTInt nyPl D
A unique number identifying the parameter id for thisfield.

377

305-CD-042-001

3.4 Command Model

The Command Model component consists of two processesthat run on the FOS Data Server: Com-
mand Model and Rule Constraint Check. Together these processes are responsible for performing
rule-based constraint checking on lists of commands.

The Command Model processis persistent and is responsible for handling interprocess communi-
cation with other subsystems and with other CM S processes. Command Model receives requests
for constraint checking of activity definitions, RTS definitions, command procedure definitions,
and command lists representing scheduled activities. After the constraint check is complete, Com-
mand Model returns a status, including alist of constraint violations, to the requesting process.

Rule Constraint Check is a temporary process spawned by Command Model to actually perform
the constraint checking. Constraint definitions are associated in the FOS database with the
commands that they apply to. Rule Constraint Check examines the list of commands passed to it
and, for each command having an associated constraint, performs the constraint check.

3.4.1 Command Model Context

The CMS Command Model interfaces with severa FOS subsystems and the CMS Schedule
Controller task, as shown in the Context Diagram (see Figure 3.4-1) and summarized below.

CMS Schedule Controller:
« SendsaDirective List, which contains asequence of ATC, RTS, and real-time commands.

* Receives a Constraint Check Status, which includes information on any directive that
violated a database defined constraint.

CMS Load Catalog:
« Sendsan RTS Load Contents, which contains a sequence of commands with relative time
tags.

« ReceivesaConstraint Check Status, which includesinformation on any directiveinan RTS
load contents that violated a database defined constraint.

User Interface:

« SendsaCommand Procedure, which contains a sequence of ECL directivesincluding real-
time commands.

« Recelves a Constraint Check Status, which includes information on any directive in a
procedure that violated a database defined constraint.

Data Management:

3-78 305-CD-042-001

6.-€

T00-¢70-AdD-50€

Constraint Definitions,

Activity Definition
Command List

DMS

CMS CMS
Schedule > Load
Controller Catalog

/\ Command List
CMS Status
CMS Status This $ystem RTS Load
Contents
CMS
Command Model
CMS Status
CMS Status, Command
Events Procedure V
<< FUI

Figure 3.4-1. Command Model Context Diagram

« Sendsan Activity Definition Directive List, which contains a sequence of commands with
relative time tags.

+ Receives a Constraint Check Status, which includes information on any directive in an
activity definition that violated a database defined constraint.

« Provides Constraint Definitions, which specify the rules being checked.
» Receives Events, which are status messages about CMS Command Model processing.

3.4.2 Command Model Interfaces
Table 3.4.2. Command Model Interfaces
Interface Interface Class Interface Class Service Service Frequency
Service Description Provider User
Validate FmMsValidateActi | Proxy between Command | CMS: DMS: PDB | 1/week
Activities vities Model and DMS. Command Validation
Receives a list of activity | Model
definitions to be constraint
checked. Result list of
FoMsCMSStatus is
returned
Validate FmMsValidatePro | Proxy between Command | CMS: FUI: 1/week
Procedure cedure Model and FUI Command Procedure
Model Builder
FoMSValidatePro | Request to validate given
cReq procedure
FoMsCMSStatus | Status of constraint check
Validate DAS | FmMsValidateCo | Proxy between CMS: CMS: CMS:Sche | 1/day
Command nstraints Command Model and Command dule
List CMS: Schedule Controller | Model Controller
FmScConstCk Command List to be
constraint checked
FoMsCMSStatus | Status of constraint check
Validate RTS | FmMsValidateCo | Proxy between CMS: CMS: CMS: Load | 1/day
load nstraints Command Model and Command Catalog
CMS: Load Catalog. Model
Proxy retrieves RTS load
to be constraint checked
FoMsCMSStatus Status of constraint check
Send Events | FoFdEventLogger | Proxy between DMS and | DMS: Event | CMS: 10/day
CMS: Spacecraft Logger Spacecraft
requesting broadcast of a
message

3-80

305-CD-042-001

3.4.3 Command Model Object Model

FmCcCommandModel controls the processing of requests for rule-based command-level
constraint checking of scheduled commands, procedure definitions, RTS load definitions, and
activity definitions (see figures 3.4-2 through 3.4-8). FmCcCommandModel passes the
FmScConstCk list of scheduled commands received from the CM S Schedule Controller directly to
FmCcRuleConstraintModel for constraint checking. For procedure, RTS, or activity definitions,
FmCcCommandModel creates an FmCcDirectiveList from the definition and passes it to
FmCcRuleConstraintModel.

To process a request for checking an RTS definition, FmCcCommandModel expands the RTS
definitions and forwards the directive list to be constraint checked.

To process a request for checking a procedure definition, FmCcCommandModel makes a single
FmCcDirectiveList for each possible path in a procedure. The directive lists include the further
expansion of procedures called from within the definition being validated. Each of these lists are
sent to FmCcRuleConstraintModel for command rule-based constraint checking. The list of
FoMsConflictinfos received in FOMsSCMSStatus for each list are combined to make a single
FoOMsCM SStatus. The worst status returned will determine the newly created FoM sCM SStatus
that is forwarded to FmM sV alidateProcedure proxy.

To process arequest for checking an activity definition, FmCcCommandModel processes of list of
activity definitions. Each activity definition is expanded into a FmCcDirectiveList. Procedures
within activities are also expanded as described above, this will create multiple
FmCcDirectivelLists per activity definition. Each list is command rule-based constraint checked.
The FoMsConflictInfo for each directivelist is combined so that there is one FoM sCM SStatus for
each activity definition. A list of FoMsCM SStatusesisreturned to FmMsV alidateActivities proxy.

The proxies, FmMsVaidateConstraints, FmMsV alidateProcedure, and FmMsV alidateActivites,
provide interprocess communication (IPC) between the FmCcCommandModel and its various
interfaces.

FmMsValidateConstraints manages communications with the CMS Schedule Controller
(FmScScheduleController) and the CMS Load Catalog (FmLdLoadCatalog).
FmMsValidateConstraints receives a FmScConstCk command list from the schedule controller
which is forwarded to FmCcCommandModel. It also receives the RTS file name and location.
From thisinformation it creates a FmCcDirectivelList from the RTS directives and this list is sent
to FmCcCommandM odel for processing.

3-81 305-CD-042-001

¢8-€

T00-¢70-AdD-50€

FmCcDirectiveList

=

FoEcDirective

CONTINUED

=

@ is created by ——

{I/F proxy to Internal CMS subsystems}

FmMsValidateConstraints

CreateConnection() : EcTInt

DestroyConnection() : EcTVoid

Receive() : FOMsCMSStatus&

Send(const RWCollectable&) : FoMsCMSStatus&
ValidateCommands(const FmScConstCk&) : FOMsCMSStatus&
ValidateRTS(const RWCString&, const RWCString&) : FOMsCMSStatus&

+ o+ o+ + o+ o+

sends command

CslfMessageHandler vallliséafgtr)n
+ annect() FmCcCommandModel
+ Disconnect()
+ Receive() | handles__|
+ Send() IPC + BuildActivityList(const FoAcActivityDef&, const RWSlistCollectables&) : EcTint
+ BuildProceduresList(const FoClProcedure&, const RWSlistCollectables&) : EcTVoid
E + HandleMessage(const RWCollectable&) : EcTVoid
FdEvEventLogger) + ProcessActhltyDeflrjltlons(const RWSilistCollectables&) : RWSlistCollectables&
- evenr?fneé\gzz st ProcessCommandList(const FmScConstCk&) : FOMsSCMSStatus&
9 + ProcessIF(RWSlistCollectableslterator&, RWSlistCollectables&) : RWSlistCollectables&
{I/F proxy with DMS} + ProcessProcedureDefinitions(const FoCIProcedure&) : FOMsCMSStatus&
+ ProcessRTSDefinitions(const FoCcDirectiveList&) : FOMSCMSStatus&
E + ProcessSTART(const RWCString&, const RWCString&) : RWSlistCollectables&
- + RTProcessing() : EcTVoid
FmCcRuleConstraintModel creates + SendConflictinfo(const RWSlistCollectable&) : EcTVoid
CONTINUED receives activities
E for validation
communicates
FmMsValidateActivities with
CreateConnection() : EcTInt E

DestroyConnection() : EcTVoid
Receive() : RWSlistCollectables&
Send(const RWSilistCollectables&)

+ o+ o+ o+ o+

ValidateActivities(const RWSlistCollectables&) : RWSlistCollectables&

FmMsValidateProcedure

: RWSilistCollectables&

{I/F proxy with FUI}

CONTINUED

{I/F proxy with DMS}

Figure 3.4-2.

Command Model Object Model (1 of 7)

€8¢

T00-¢70-AdD-50€

FoClProcedure

myName : String

myArgCnt : EcTInt

myType : enum{Emer,Cmd,Local,ActDef,User}
myAuthor : String

mySyntaxFlag : EcTBoolean
myValidationFlag : EcTBoolean
myScld : EcTInt

mylnstrid : EcTInt

myVersionNum : EcTInt

myEditFlag : EcTBoolean

myCmDir : String

myWorkingDir : String

myTmpPath : String

myArg : Container*

myProcControl : FuCIProcControlWin*

==
FoMsCMSStatus =
- myld : EcTint L is sent to— FmCcCommandModel
- myStatus : RWCString ——recieves—
| | CONTINUED
. : communicates
is received by with
= |
FmMsValidateProcedure
creates/
sends
+ CreateConnection() : EcTInt
+ DestroyConnection() : EcTVoid
+ Receive() : FOMsSCMSStatus&
+ ValidateProcedure(const FoMsValidateProcReq&) : FOMsSCMSStatus&
+ Send(const FoClProcedure&) : FOMsCMSStatus&

{I/F proxy with FUI} |

recieves

=

+ o+ o+ o+

Read() : String

Write() : EcTInt
CheckSyntax() : EcTInt
GetMetaData() : EcTVoid

FoMsValidateProcReq

- myProcName : RWCString
- myDirectory : RWCString

{shared - FMN,FUI}

{shared - FUI,FMN,FPS}

=

FoEcDirective

CONTINUED

Figure 3.4-3. Command Model Object Model (2 of 7)

¥8-€

T00-¢70-AdD-50€

FmCcRuleConstraintModel

- myCommandList: RWDlistCollectables
- myConstraintList: RWSlistCollectables
- mysStatus : enum {failed,passed,pending}

+ PerformConstraintCheck(const FmCcCommandRule &EcTVoid
+ ProcessList(): FOMsCMSStatus&

==
FmCcCommandModel
CONTINUED ——creates—@
==
FoMsCMSStatus
——sends—
- myld : EcTInt
- myStatus : RWCString
==

=

verifies

FmCcCommandRule

=

- myTr

- myHardSoftFlag: enum(H,S)

igger : FMCcSymbolDef

=

== =

FmCcPreRule

FmCcPostRule

FmCcNoExistRule FmCcScalarRule

CONTINUED

=3

CONTINUE

D CONTINUED CONTINUED

FmCcBitRule

FmCcOffsetRule FmCcTelemetryRule

CONTINUED

CONTINUED

CONTINUED

=

FmCcRepeatAfterRule

FmCcNoCmdsBeforeRule

CONTINUED

CONTINUED

FmMCcNoRTCmds

Rule FmCcNoCmdsAfterRule

CONTINUED

CONTINUED

FmCcSymbolDef

- myName : RWCString

=

FmCcDataField

myNumber : EcTInt
mySubfieldName: RWCString

=

1+

FmCcComparisonBits

myBitLocation: EcTInt
myValue : EcTInt

Figure 3.4-4. Command Model Object Model (3 of 7)

G8-¢

T00-¢70-AdD-50€

FmCcSymbolDef

CONTINUED

FmCcRuleConstraintModel

| conTinuED
verifies

—> FmCcCommandRule

- myHardSoftFlag : enum(H,S)
- myTrigger : FmCcSymbolDef

&=
FmCcComparisonBits
FmCcTelemetryRule
CONTINUED - myText : RWCString
+ Evaluate() : FoMsConflictinfo&
FmCcBitRule bl

FmCcScalarRule

- myComparisonValue : Type

- myDataField : EcTInt

- mySubfieldName : RWCString

- myOperator : enum(LT,LE,GT,GE,EQ,NE)

+ Evaluate(const RWSlistCollectables &) : FOMsCMSStatus&

myComparisonBits : RWSlistCollectables
myDataField : EcTInt

myNotFlag : EcTBoolean
mySubfieldName : RWCString

FmCcNoExistRule

- myExcluder : RWCString

Evaluate(const RWSlistCollectables &) : FoMsConflictinfo&

+ Evaluate(const RWDlistCollectables &) : FoMsConflictinfo&

Figure 3.4-5. Command Model Object Model (4 of 7)

98-€

T00-¢¥0-dD-S0E

FmCcRuleConstraintModel

| CONTINUED
verifies

FmCcCommandRule

- myHardSoftFlag :enum(H,S)
- myTrigger : FmCcSymbolDef

CONTINUED
FmCcOffsetRule

- myOffset : EcTULongInt
+ Evaluate(const RWDlistCollectables &, EcTInt) : FoMsConflictinfo&

FmCcNoRTCmdsRule E

FmCcRepeatAfterRule
+ Evall onst RWDIistCollectables&, EcTInt) : FoMsConflictinfo&
+ Evaluate(const RWDlistCollectables &, EcTInt) : FoMsConflictinfo&
FmCcNoCmdsBeforeRule FmCcNoCmdsAfterRule
+ Evaluate(const RWDlistCollectables &, EcTInt) : FoMsConflictinfo& + Evaluate(const RWDlistCollectables &, EcTInt) : FoMsConflictinfo&

Figure 3.4-6. Command Model Object Model (5 of 7)

/8-€

T00-¢70-AdD-50€

==

==

FmCcRuleConstraintModel

| CONTINUED
verifies

FmCcCommandRule

==

FmCcSymbolDef

CONTINUED@®
1+ | 1+

myHardSoftFlag : enum(H,S)
myTrigger : FmCcSymbolDef

FmCcPostRule

myMaxTime : EcTULongInt
myMinTime : EcTULonglint
myPacifier : RWSlistCollectables

Evaluate(constRWDlIistCollectables &, EcTInt} FoMsConflictinfo&

FmCcPreRule

myExcluder : FmCcSymbolDef
myMaxTime : EcTULongInt
myMinTime : EcTULongint
mySatisfier : RWSlistCollectables

Evaluate(const RWDlIistCollectables &, EcTInt) FoMsConflictinfo&

Figure 3.4-7. Command Model Object Model (6 of 7)

88-€

T00-¢70-AdD-50€

B

B

FoMsCMSStatus

myld : EcTInt
myStatus : RWCString

FoMsConflictInfo

- myCmdMnemonic : RWCString
- myConflictingCmd : RWCString

> @ - myConstraintTime : RWTime

- myld : EcTint
- mySoftHardFlag : EcTInt
- myViolationInfo : RWCString

FoMsStatusFailed

==

FoMsStatusComplete

B

FoMsStatusPending

Figure 3.4-8. Command Model Object Model (7 of 7)

FmM sV alidateProcedure manages communication with FUI. FmMsV alidateProcedure receives
the location of the procedure definition and instantiates the FOCIProcedure class which is sent to
FmCcCommandModel for processing.

FmMsValidateActivities manages communication with DMS. FmMsV alidateActivities receives
alist of activity definitions. Thislist isforwarded to FmCcCommandModel for processing.

FmCcRuleConstraintModel processes the directive lists. It keeps track of the number of ATC
commands issued in the same second and verifies the existence of aload when an uplink request
isdetected. If adirectiveinthelist hasaconstraint associated with it , FmCcRuleConstraintM odel
performs the validation of that database defined command constraint rule. Depending on the
requirement of the rule, the directive list can be searched forward or backward to locate (or not)
the command that will satisfy the rule. FmCcRuleConstraintModel returns an FoM sCM SStatus.

FmCcSymbol Def is associated with the different FmCcCommandRules. It allows certain triggers,
excluders, satisfiers and pacifiersto be defined in greater detail. Each rule hasasymbol definition.
If a FMCcSymbolDef doesn't have FmCcDataFields defined for it, then the trigger, excluded,
satisfier, or pacifier is the command itself, i.e. the command need only exist and not have its data
fields set to a certain value. If there are multiple FmCcSymbolDefs defined (thisis only allowed
for satisfiers and pacifiers) then the rule may be validated if any one of the FmCcSymbol Def
commands is found in the command list. If FmCcDataFields are defined then the bits for those
data fields must match the command in the list in order to validate the constraint on the current
command (trigger).

Triggers (the current command being constraint checked) for FmCcTelemetryRule, FmCcPreRule
and FmCcPostRule may have FmCcDataFields defined, but may not have multiple instances of
FmCcSymbolDef. All other FmCcCommandRule types may only have a single instance of
FmCcSymbol Def without FmCcDataFiel ds defined - the simplest form. The Excluded command
in FmCcPreRule may have FmCcDataFields defined but may not have multiple
FmCcSymbolDefs. The Excluded command in FmCcNoEXxistRule may only be defined in the
simplest form of FMCcSymbol Def. Pacifiersand Satisfiers can have any one of the three instances
of aFmMCcSymbol Def.

FmCcCommandRule is an abstract class. All the rule types are derived from this class.
FmCcCommandRule returns an FoMsConflictinfo when a violation occurs or NULL if the
command ruleis verified. Only one FmCcCommandRule is evaluated at any one time.
FmCcBitRule is derived from FmCcCommandRule. It verifies the rule specified data field
FmCcComparisonBits are (or are not) equal to the datafield of the trigger command.

FmCcNoCmdsAfterRule is derived from FmCcOffsetRule. It verifies that no commands are
issued between the trigger command and the rule specified offset.

FmCcNoCmdsBeforeRule is derived from FCcOffsetRule. It verifies that no commands are
issued between the rule specified offset and the trigger command.

FmCcNoEXxistRule is derived from FmCcCommandRule. It verifies that the rule specified
Excluded command is not in the command list.

FMCcNoRTCmdsRuleisderived from FmCcOffsetRule. It verifiesthat after thetrigger command
is planned to be issued to a certain remote terminal (RT) that no other commands are issued to the
same RT until the offset.

3-89 305-CD-042-001

FmCcOffsetRuleisderived from FmCcCommandRule. Thisisan abstract class. Any rulethat has
an offset is derived from this class.

FmCcPostRule is derived from FmCcCommandRule. It verifies that the given pacifier succeeds
the trigger command in the given time period. The trigger may only have a single
FmCcSymbolDef defined with optional FmCcDataFields specified. The pacifier may be defined
using multiple FmCcSymbolDefs indicating that any one command in the list of
FmCcSymbolDefs may satisfy the rule.

FmCcPreRule is derived from FmCcCommandRule. It verifies that the given satisfier proceeds
thetrigger command in the given time period. An optional excluded command may be defined and
represents acommand that cannot occur between the current command and the given satisfier. The
trigger and the excluded may only have a single FmCcSymbolDef defined with optional
FmCcDataFields specified. The satisfier may be defined using multiple FmCcSymbol Defs
indicating that any one command in the list of FMCcSymbol Defs may satisfy the rule.

FmCcScaarRule is derived from FmCcCommandRule. It verifies that the trigger command data
fields value properly compares to the FmCcDataField value stated in the rule. The following
comparisons are permitted: less than, less than or equal to, greater than, greater than or equal to,
equal to and not equal to.

FmCcTelemetryRuleis derived from FmCcCommandRule. An FOT specified test string is output
to FoMsConflictinfo. the specified trigger may have only one FmCcSymbolDef defined with
optional FmMCcDataFields.

FoOMsCMSStatus is an abstract class that represents the results of command level rule-based
constraint checking. It containsalist of FoMsConflictInfo objects.

FoMsConflictinfo specifies the information concerning the violation of a command level rule-
based constraint check

FoMsStatusFailed is derived from FOMsCMSStatus. If any of the FoMsConflictinfo objects
indicate a hard constraint this object is returned.

FoMsStatusPending is derived from FOMsSCMSStatus. If all of the FoMsConflictinfo objects
indicate soft constraints this object is returned.

FoMsStatusComplete is derived from FOMsCMSStatus. No FoMsConflictinfo objects were
returned as aresult of evaluating the rules indicating the directive list is valid.

3-90 305-CD-042-001

3.4.4 Command Model Dynamic Model
The Command Model Dynamic Model has five scenarios:
e Initiaization
« Expanded Directive List Receipt
« Command Procedure Receipt
« Activity Definition List Receipt
« RTSLoad Definition Receipt

3.4.4.1 Command Model Initialization Scenario

3.4.4.1.1 Command Model Initialization Scenario Abstract

This scenario occurs when the Command Model processis started. It addresses the initialization
of the Command Model interfaces and loading of configuration files (see Figure 3.4-9).

3.4.4.1.2 Command Model Initialization Summary Information

Interfaces:
« Name Server
« FUI
« DMSEvent Handling
« DMS Sybase

« CMS Schedule Controller

e CMSLoad Catalog
Stimulus:

e Command Model processis started
Desired Response:

« Command Model is ready to receive request to perform rule based command level
constraint checking

Pre-Conditions:
* None
Post-Conditions:
«Command Model is ready to process requests

3-91 305-CD-042-001

¢6-€

T00-¢70-AdD-50€

FmCcCommandModel

DMS

request connection

request configuration & startup files

J/\

listen for
other
connections

@

Figure 3.4-9. Command Model Initialization Event Trace

read configuration & startup files

3.4.4.1.3 Command Model Initialization Scenario Description

The Expanded Directive List Receipt scenario describesthe receipt and processing of an When the
Command Model is started FmCcCommandModel will initialize its interfaces by requesting
address information from the Name Server. Once the interface connections have been made
FmCcCommandModel will listen for requests.

3.4.4.2 Command Model Expanded Directive List Receipt Scenario

3.4.4.2.1 Command Model Expanded Directive List Receipt Scenario Abstract

Expanded Directive List from CMS Schedule (FmScScheduleController) via
FmMsValidateConstraints proxy (see Figure 3.4-10).

3.4.4.2.2 Command Model Expanded Directive List Receipt Summary Information
Interfaces:
« CMS Schedule Controller
Stimulus:
» Receipt of Expanded Directive List
Desired Response:
e Statusreturned
Pre-Conditions:
« Schedule controller software has been initiate
« Command model software has been initiated
Post-Conditions:
* None

3.4.4.2.3 Command Model Expanded Directive List Receipt Scenario Description

The Command Model receives the expanded directive list from the Schedule Controller. It sends
the directive list to the Rule Constraint Model for command rule-based constraint validation. An
FoMsCMSStatus is returned to the Schedule Controller.

3-93 305-CD-042-001

v6-€

T00-¢70-AdD-50€

FmMsValidateConstraints

FmCcRuleConstraint

(Internal CMS proxy) Model
FmScScheduleController FmCcCommandModel
sends
directive ———=>
list
| sendslist >
via IPC
sends
—— directive —————>>
list
< returns
status
< sends status |
via IPC
sends
<< status

Figure 3.4-10. Command Model Expanded Directive List Event Trace

G6-€

T00-¢70-AdD-50€

FUI

requests procedure
definition validation

I<<——sends status

—>>

FmCcCommandModel

FmMsValidateProcedure
(proxy for FUI)

sends procedure
via IPC

< sends status
via IPC

—>>

sends definiton———=>>

returns

FmCcRuleConstraint
Model

status

Figure 3.4-11. Command Model Command Procedure Receipt Event Trace

3.4.4.3 Command Model Command Procedure Receipt Scenario

3.4.4.3.1 Command Model Command Procedure Receipt Scenario Abstract

The Command Procedure Receipt scenario describes the receipt and processing of a procedure
from FUI viaFmM sV alidateProcedure proxy (see Figure 3.4-11). The proxy opens the procedure
file and restores a FOCIProcedure class which is sent via IPC to FmCcCommandModel. The
Command Model builds FmCcDirectiveLists from the procedure. The directive lists are sent to

the Rule Constraint model where the database defined rules associated with the directives are
validated. An FOMSCM SStatus result is returned to FUI.

3.4.4.3.2 Command Model Command Procedure Receipt Summary Information
Interfaces:

« FUI
Stimulus:

« Receipt of Procedure
Desired Response:

« Status returned
Pre-Conditions:

« FUI procedure builder has been initiated

« Command model software has been initiated
Post-Conditions:

* None

3.4.4.3.3 Command Model Command Procedure Receipt Scenario Description

The Command Model receives the procedure from FUI viathe FoMsValidateProcedure proxy. It
creates FmCcDirectiveLists for each possible path in a procedure. If another procedure is
referenced within the procedure being validated, it too is expanded. These lists are each sent to
the Rule Constraint Model for command rule-based constraint validation. Each call to the Rule
Constraint Moddl returns a FOMsCM SStatus. The Command Model combines the Conflicting
command information contained within the FOMsCM SStatus for each directive list that was built
for the procedure into one FOMsCM SStatus which is returned to FUI.

3.4.4.4 Command Model Activity Definition List Receipt Scenario

3.4.4.4.1 Command Model Activity Definition List Receipt Scenario Abstract

The Activity Definition Receipt scenario describes the receipt and processing of activity defini-
tions from DM S viathe FmMsValidateActivities proxy (see Figure 3.4-12).

3.4.4.4.2 Command Model Activity Definition List Receipt Summary Information

I nterfaces:

« DMS
Stimulus;

3-96 305-CD-042-001

L6-€

T00-¢70-AdD-50€

DMS

FmCcCommandModel
FmMsValidateActivites ;
FmCcRuleConstraint
(proxy for DMS) Model
requests activity
— definition validation ==
(sends list of definitions)
sends definition >
via IPC
sends
directive
list for each —>
activity
returns
&——status for each
activity
< sends status
list via IPC
< sends status
list

Figure 3.4-12. Command Model Activity Definition List Receipt Event Trace

« Receipt of Activity Definition List
Desired Response:
e Statusreturned
Pre-Conditions:
« DMSvalidation software has been initiated
« Command model software has been initiated
Post-Conditions:
 None

3.4.4.4.3 Command Model Activity Definition List Receipt Scenario Description

The Command Model receives a list of activity definitions from DMS via the
FoMsValidateActivities proxy. It creates FmCcDirectivelist for each activity. Since activities
may reference procedures, the definitions are expanded. Multiple directivelists may exist for each
activity due to procedure expansion described above. These lists are each sent to the Rule
Constraint Model for command rule-based constraint validation. Each call to the Rule Constraint
Model returns a FOMsCM SStatus. The Command Model combines the Conflicting command
information contained within the FOMSCM SStatus for each directive list that was built for an
activity and creates one FOMsCM SStatus for that activity. A list of FoMsCM SStatuses, one for
each activity being command rule-based constraint checked, is returned to DMS.

3.4.45 Command Model RTS Load Definition Receipt Scenario

3.4.4.5.1 Command Model RTS Load Definition Receipt Scenario Abstract
The RTS Definition Recelpt scenario describes the receipt and processing of an RTS|oad contents
from CMS Load Catalog (FmLdLoadCatalog) via FmMsValidateConstraints proxy (see Figure
3.4-13).
3.4.4.5.2 Command Model RTS Load Definition Receipt Summary Information
Interfaces:

« CMSLoad Catalog

- DMS
Stimulus:

« Receipt of RTS Definition
Desired Response:

» Statusreturned

3-98 305-CD-042-001

66-€

T00-¢70-AdD-50€

FmMsValidateConstraints
(Internal CMS proxy)

FmLdLoadCatalog
requests
RTS —>>
validation
sends
<< status

FmCcRuleConstraint

Model
FmCcCommandModel
sends RTS
load contents ——=>
file via IPC
sends
—— directive ————=>
list
< returns
status
< sends status

via IPC

Figure 3.4-13. Command Model RTS Load Definition Receipt Event Trace

Pre-Conditions:

« Load catalog software has been initiated

« Command model software has been initiated
Post-Conditions:

 None

3.4.4.5.3 Command Model RTS Load Definition Receipt Scenario Description

The Command Model receives the RTS load contents definition from Load catalog via
FmMsValidateConstraints. It builds an FmCcDirectiveList and sends the list to the Rule
Constraint Model for command rule-based constraint validation. An FOMsCM SStatusis returned
to the Load Catalog

3-100 305-CD-042-001

3.4.5 Command Model Data Dictionary

Preprocessor Macros
_FnCcCommandModel _h_

Types
cl ass FnCcConmmandModel

The command model provides access to command level rule based constraint checking for scheduled commands, commands
within an RTS load contents definition file, commands within activity definitions, and commands within procedures.

Public Functions

EcTInt Buil dActivityList(const FoAcActivityDef& const RWSlistCollecta-
bl es&)

Buildsthe listsfor Activities

EcTl nt Buil dProceduresLi sts(const Fod Procedure&, const RWSlistColl ect a-
bl es&)

Builds the lists for procedures
EcTVoi d Handl eMessage(const RWCol | ect abl e&)

Handles all messages between proxies. The proxies are asfollows: FmMsValidateConstraints - used internal to CMS,
FmMsValidateProcedure - used by FUI, and FmMsValidateActivities - used by DMS

FoMsCVBSt at us& ProcessActivityDefinitions(const FoFdActivityList&)

For each activity in the FoFdActivityList the commands within the activity are sent to the FmCcRule ConstraintM odel to
be validated

FoMsCVBSt at us& ProcessComrandLi st (const FrScConst Ck&)
Process scheduled directives received from PAS

EcTVoi d Processl F(RWEl i st Col | ectabl eslterator& RWSlistCollectabl es&)
Processes | F directive when expanding procedures

FoMsCMVBSt at us& ProcessProcedur eDefinitions(const FoCd Procedure&)
Validates Procedures

FoMsCMBSt at us& ProcessRTSDefiniti ons(const FoDirectivelist&)
Validates RTS load contents files

RWEl i st Col | ect abl e& ProcessSTART(RWCSt ri ng&, RWCStri ng&)
Processes START directive to expand procedures

EcTVoi d SendConflictlnfo(const FoMsCVBSt at us&)

Sends asingle FOMsCM SStatus - results of rule based constraint checking to either FUI, the scheduled controller (CMS),
or the load catalog (CMS)

EcTVoi d SendSt at uses(const RWSl i st Col | ect abl es&)
Sends alist of FOMsCM SStatus(es) to DMS

3-101 305-CD-042-001

Preprocessor Macros
_FmCcCommandRul e_h_

Types
enum Fl agType
Enumeration type for hard/soft flag

Enumerators

H
S

cl ass FnCcConmmandRul e

Public Functions

Get Har dSof t Fl ag(voi d)
gets myHardSoftFlag

RWCSt ri ng& Get Tri gger (voi d)
Gets myTrigger

EcTVoi d Set Har dSof t Fl ag(const enum)
Sets myHardSoftFlag

EcTVoi d Set Tri gger (const RWCStri ng&)
sets myTrigger

Private Data

Fl agType nyHar dSoft Fl ag
RWCString nmyTrigger

Include Files
FnCcOF f set Rul e. h

Preprocessor Macros
_FnCcNoCndsAfterRul e_h_

Types
cl ass FnCcNoCndsAfterRul e

This class determines if any command is performed after the offset. The rule reads as follows:
If command A then NO commanding at least X seconds before command A.

Base Classes
public FmCcOf f set Rul e

Public Functions

FoMsConfli ctl nfo& Eval uate(const RWD i st Col | ectabl es& Ectlnt)
Test to seeif the next command is issued before the offset

3-102 305-CD-042-001

Include Files
FCcOF f set Rul e. h

Preprocessor Macros
_FnmCcNoCndsBef oreRul e_h_

Types
cl ass FnCcNoCndsBef or eRul e

this class determins if any command is performed between the offset and the current command. The rule reads as follows:
If command A then NO commanding at least X seconds before command A.

Base Classes
public FmCcO f set Rul e

Public Functions

FoMsConflictl nfo& Eval uate(const RAD istCol |l ectabl es& EcTlnt)

Include Files
FnCc CommandRul e. h

Preprocessor Macros
_FmCcNoExi stRul e_h_

Types
cl ass FnCcNoExi st Rul e

Thisrule searchesthe entire command list to determine if myExcluder isinthecommand list If found itisaviolation. Therule
reads as follows:

If command A occurs then command B must not occur

Base Classes
publ i ¢ FmCcConmandRul e

Public Functions
FoMsConflictl nfo& Eval uate(const RAD i st Col | ectabl es&)
Determines if myExcluder isin the command list
Protected Functions

RWCSt ri ng& Get Excl uder (voi d)
gets myExcluder

EcTVoi d Set Excl uder (const RWCStri ng&)
Sets myExcluder
Private Data

RWCSt ri ng nyExcl uder
The command mnemonic that is not to occure in the command list

3-103 305-CD-042-001

Include Files
FCcOF f set Rul e. h

Preprocessor Macros
_FnCcNoRTCnmdsRul e_h_

Types
cl ass FnCcNoRTCnmdsRul e

This class ensures that commands are not being sent to the same RT at the current (executing) command before the offset ex-
pires

Base Classes
public FnmCcOf f set Rul e

Public Functions

FoMsConfl i ctl nfo& Eval uate(const RWD i st Col |l ectabl es& const EcTint)
Ensures that once a command is sent to the RT no other commands are sent to that RT before the offset

Include Files
FnCc CommandRul e. h

Preprocessor Macros
_FmCcOfFfset Rule_h_

Types

class FnCcOf f set Rul e

Thisisthe base classfor those rulesthat have offset times: FmCcRepeatAfterRule, FmCcNoCmdsBeforeRule, FmCcNoCmd-
sAfterRule, and FMCcNoRTCmdsRule

Base Classes
publ i ¢ FmCcConmandRul e

Public Functions
virtual FoMsConflictlnfo& FnCcOf f set Rul e: : Eval uat e()
Abstact function for evaluating offset rules - no processing takes place
Protected Functions

EcTULongl nt Get O f set (voi d)
gets myOffset

EcTvoi d Set O f set (const EcTULongl nt)
sets myOffset
Private Data

EcTULongl nt nyOf f set
Offset for commanding - represents seconds

3-104 305-CD-042-001

Include Files
FnmCc CommandRul e. h

Preprocessor Macros
_FnCcPostRul e_h_

Types
cl ass FnCcPost Rul e

The Post ruleensuresthat if acertain command isissued then another specified command must occur withinagiventimeframe.
The rule reads as follows:

If command A occurs, then command B must occur an dmust be at least X time later, and at most Y timelater. A isthetrigger
and B isthe satisfier.

Base Classes
publ i ¢ FrmCcCommandRul e

Public Functions

FoMsConfl i ct | nfo& Eval uate(const RWD i st Col | ect abl es& EcTlnt)

Evaluates the PostRule: ensuresthat if a certain command isissued then another specified command must occur within
agiven time frame.

Protected Functions
EcTULongl nt Get MaxTi ne(voi d)
gets myMaxTime
EcTULongl nt Get M nTi ne(voi d)
gets myMinTime
FrmCcSynbol Def & Get Paci fi er (voi d)
gets myPacifier
EcTVoi d Set MaxTi me(const EcTULongl nt)
sets myMaxTime
EcTVoi d Set M nTi ne(const EcTULongl nt)
Sets myMinTime
EcTVoi d Set Paci fi er(const FnmCcSynbol Def &)
sets myPacifier
Private Data
EcTULongl nt nmyMaxTi ne
time that the pacifier can be found in the command list
EcTULongl nt nyM nTi e
the pacifier can be found in the command list
FnCcSynbol Def nyPacifi er
symbols defined. If there are multiple symbols defined then any one of the symbols may satisfy the rule.

3-105 305-CD-042-001

Include Files
FnmCc CommandRul e. h

Preprocessor Macros
_FnCcPreRul e_h_

Types
cl ass FntCcPreRul e

The preRule ensures that specified commands are executed before the command being evaluated. The rule reads as follows:

If command A occurs, then command B must have occurred at least X time earlier, and at most Y time earlier. Command C
must not occur between B and A. A isthetrigger, B isthe satisfier and C is the excluded which is optional

Base Classes
publ i ¢ FnmCcCommandRul e

Public Functions

FoMsConflictlnfo& Eval uate(const RWD istCol |l ectabl es& EcTInt)

Evaluatesthe PreRule: ensuresthat specified commands are executed before the command being evaluated. It allowsthe
exclusion of a specified command.

Protected Functions
FrmCcSynbol Def & Get Excl uder (voi d)
gets myExcluder
EcTULongl nt Get MaxTi nme(voi d)
get myMaxtime
EcTULongl nt Get M nTi nme(voi d)
gets myMinTime
FrmCc Synbol Def & Get Sati sfi er(voi d)
gets mySatisfier
EcTVoi d Set Excl uder (const FnCcSynbol Def &)
Sets myExcluder
EcTVoi d Set MaxTi me(const EcTULongl nt)
SetsmyMaxTime
EcTVoi d Set M nTi me(const EcTULongl nt)
sets myMinTime
EcTVoi d Set Sati sfier(const FmCcSynbol Def &)
sets mySatisfer
Private Data

FrmCc Synbol Def myExcl uder
definition may be defined for it

EcTULongl nt nmyMaxTi me
time that the satisfier can be found. It isoptional, if itisnot set then the max timeis the beginning of the command list.

3-106 305-CD-042-001

EcTULongl nt nyM nTi ne
that the satisfier can be found.

FrmCcSynbol Def mySati sfi er
symbols defined. If there are multiple symbols defined then any one of the symbols may satisfy the rule.

Include Files
FnCcOf f set Rul e. h

Preprocessor Macros
_FnCcRepeat AfterRul e_h_

Types
cl ass FnCcRepeat Aft er Rul e

Thisrule ensures that the command is not repeated before the offset expires. The command rule reads as follows:
If Command A then command A not before X seconds
Base Classes

public FnmCcOf f set Rul e

Public Functions

FoMsConfl i ct | nfo& Eval uate(const RWD i st Col | ect abl es& EcTlnt)
Test to seeif the trigger command is repeated before the offset expires

Preprocessor Macros
_FntCcRul eConst rai nt Model _h_

Types
cl ass FnCcRul eConstrai nt Model

An instance of this classisinstantiated for each command list that will be command rule-based constraint checked

Public Functions
Get St at us(voi d)
gets myStatus
RWDI i st Col | ect abl es& Get CommandLi st (voi d)
gets myCommandList
RWEl i st Col | ect abl es& Get ConstraintLi st (void)
gets myConstraintList
EcTVoi d PerfornmConstrai nt Check(const FmCcCommandRul e&)
Given a specific rule it evaluetes the command to verify that the constraint is not being violated
FoMsCMBSt at us& ProcessLi st (voi d)

Steps through the mycommandList, verifies that no more than 8 commands are issued per second. Calls PerformCon-
straintCheck for those commands that have rules associated with them

EcTVoi d Set ConmandLi st (const RWDI i st Col | ect abl es&)
sets myCommandList

3-107 305-CD-042-001

EcTVoi d Set ConstraintList(const RWHIi st Coll ectabl es&)
sets myConstraintList

EcTVoi d Set St at us(const enum&)
Sets myStatus

Private Data
RWDI i st Col | ect abl es nmyConmandLi st
command list to be constraint checked
RWEl i st Col | ect abl es nmyConstrai ntLi st
list of Commandinfo to put in FOMsCM SStatus

FoMsCMBSt at us ny St at us

enumerated - either pass, fail, or pending. Depending on the value of myStatus the correct FOM sCM SStatus will be cre-
ated.

Include Files
FnCcCommandRul e. h

Preprocessor Macros
_FnCcScal arRul e_h_

Types
enum Conpar eType

Enumeration for comaparison type

Enumerators

EQ
GE
GT
LE
LT
NE
t enpl at e<cl ass Type> cl ass FnCcScal ar Rul e

Thisclassisatemplate class. Thescalar rule can be performed on asingledatafield. A separate rule must be defined for each
datafield that the rule will be applied. Datafields may be of typeint, double, or float ...(??) DFCD should state valid types.
The rule reads as follows:

If command A occurs, the value of aparticular datafield must be lessthan, or greater than, or equal to, or lessthan or equal to,
or greater than or equal to, or not equa to X.

Base Classes
publ i ¢ FnmCcCommandRul e

Public Functions
FoMsConflictlnfo& Eval uate(const RWSl i st Col | ectabl es&)
list for the command and performs the proper operation.

3-108 305-CD-042-001

Protected Functions

Get Qper at or (voi d)
Gets operation to perform

Type Get Conpari sonVal ue(voi d)
Gets ComparisonValue

EcTl nt Get Dat aFi el d(voi d)
Gets data field to compare

RWCSt ri ng& Get Subfi el dName(voi d)
Gets Parameter name that test is being performed on

EcTVoi d Set Conpari sonVal ue(const EcTInt)

Sets myComparisonVaue

EcTVoi d Set Dat aFi el d(const EcTI nt)
Sets myDataField

EcTVoi d Set Qper at or (const enun
Sets myOperator

EcTVoi d Set Subfi el dNane(const RWCStri ng&)
Sets mySubfieldName
Private Data

Type nyConpari sonVal ue
The value to test the command parameter against

EcTInt nyDataField
The datafield to test

Conpar eType nyQper at or
the operation to perform

RWCSt ri ng nySubfi el dName
The parameter mnemonic
Include Files
FmCcConmandRul e. h

Preprocessor Macros
_FnCcTel enetryRul e_h_

Types
cl ass FnCcTel enetryRul e

Thisrule allows a specific warning message to be output to the user when a command is encountered. The Hard/Soft flag for
this rule should be set to S(oft). The rule reads as follows:

If A occurs, print an FOT-supplied rule-specific text string in the conflict report

3-109 305-CD-042-001

Base Classes
publ i ¢ FnmCcCommandRul e

Public Functions
FoMsConflictl nfo& Eval uat e(voi d)
Returns myText to FmCcRuleConstraintM odel
Protected Functions

RWCSt ri ng& Cet Text (voi d)
Gets myText

EcTVoi d Set Text (const RWCStri ng&)
sets myText
Private Data

RWCSt ri ng myText
FOT supplied text message

Preprocessor Macros
FmvsVal i dateActivities h

Types

cl ass FmvsVal i dateActivities
Thisclassisaproxy classfor DM S to send one or more activities to be constraint checked

Public Functions

EcTl nt Creat eConnection(void)

Establishes a connection with FmCcCommandModel to permit the transfer of alist of activity definitions to be command
rule-based constraint checked.

EcTVoi d DestroyConnecti on(voi d)
Destroys the connection with FmCcCommandM odel

RWEIl i st Col | ect abl es& Recei ve(voi d)
Receivesthe results of rule-base command constraint checking, in regardsto activitiesthisisalist of FOMsCM SStatus(es)

RWEl i st Col | ect abl es& Send(const FoFdActi vityLi st &)
Sends alist of one or more activity definitions to the FmCcCommandModel for rule-base command constraint checking

RWEl i st Col | ect abl es& Val i dat eActivities(const FoFdActivityList&)
Requests that alist of activities be rule based constraint checked Thisisthe call used by the service user (DMS)
Preprocessor Macros
_FmvsVal i dat eConstraints_h_

Types

cl ass FnmvsVal i dat eConstrai nts

This class represents the interface proxy class between CM Sinternal subsystems and the FmCcCommandModel class. FmC-
cCommandM odel manages the command rule-based constraint checking.

3-110 305-CD-042-001

Public Functions

EcTl nt Creat eConnection(void)

Establishes aconnection with FmCcCommandModel to receive constraint checking request from the schedule controller
and the load catalog

EcTVoi d DestroyConnecti on(voi d)
Destroys the connection with FmCcCommandM odel
FoMsCMBSt at us& Recei ve(voi d)
Receives the results of rule-base command constraint checking, FOMsCM SStatus

FoMsCMVBSt at us& Send(const RWCol | ect abl e&)

Sends either aFmScConstCk command list from the schedule controller or aFoCcDirectivelist created from an RTSload
contents file to the FMCcCommandModel for rule-base command constraint checking

FoMsCMBSt at us& Val i dat eCormands(const FnScConst Ck&)

FmScScheduleController invokes this function to send the DAS scheduled command list to be command rule-based con-
straint checked

FoMsCMBSt at us& Val i dat eRTS(const RACSt ri ng&, const RWCStri ng&)

FmLdLoadCatal og invokes this function to send the directory name and load name from the generate RTS load request
to be command rule-based constraint checked. Thisfunction createsthe FoCcDirectiveList to the FmCcCommandModel.

Preprocessor Macros
_FmvsVal i dat eProcedure_h_

Types

cl ass FnMsVal i dat ePr ocedur e

Thisclass represents the interface proxy class between FUI subsystem and the CM S FmCcCommandModel class. FmCcCom-
mandM odel manages the command rule-based constraint checking .

Public Functions
EcTl nt Creat eConnection(void)
Establishes a connection with FmCcCommandModel to permit the transfer of procedure validation request
EcTVoi d DestroyConnecti on(voi d)
Destroys the connection with FmCcCommandM odel
FoMsCMBSt at us& Recei ve(voi d)
Receives the results of rule-base command constraint checking, FOMsCM SStatus
FoMsCMBSt at us& Send(const Fod Procedure&)
Sends a FoClProcedure object to the FmCcCommandM odel for rule-base command constraint checking

FoMsCVBSt at us& Val i dat eProcedur e(const FoMsVal i dat ePr ocReq&)

FUI invokes this function to send avalidate procedure request to the FmCcCommandM odel, so that the procedure can be
command rule-based constraint checked

3-111 305-CD-042-001

Include Files
FoEcGr oundDi recti ve. h

Preprocessor Macros
_FoEcComent _h_

Types

cl ass FoEcComment
This classis used for comments in the ground script It may represent a space directive or simply plain text

Base Classes

publ i c FoEcGroundDirective

Private Data
RWCSt ri ng nyText

The string to hold the comment
Include Files
FoOEcTi ne. h

Preprocessor Macros
_FoEcDel taTi ne_h_

Types

cl ass FoEcDel taTi nme
Thistimeisderived from FOEcTimeit represents a deltatime that is plus/minus so many minutes and seconds from some spec-
ified time
Base Classes

public FoEcTi me

Private Data

EcTChar nyPl usM nusSi gn
the plus/minus sign indicates whehter time should be added to or taken from the specified time

EcTChar nyStart St opl ndi cat or

the start/stop indicator is used to determineif the delta should be taken from the start time or the stop time specified The
default isthe start time

Preprocessor Macros
_FoEcDirective_h_

Types

cl ass FoEcDi rective

Thisisashared classin the FOS. It represents adirective in the system. The directive can be used in an Activity definition, a
CMS schedule of directives, acommand procedure and in a ground script.

3-112 305-CD-042-001

Public Functions

voi d CheckSyntax(EcTl nt errcode)
voi d Execut e(voi d)
voi d LogDirective(void)
voi d Parse(void)
voi d Updat eSt at us(voi d)
Private Data

EcTint nyActivityld

The activity id in which thisdirective is scheduled
EcTInt nyDASId

The DAS Id in which the directive is scheduled
FuTdDat aSour ce* nyDat aSour cel d
RWCString nmyDi rectiveText

The directive text
FuGsGr oundScri pt Control * nmyGndScri pt
EcTInt myLi neNum

the line number in the procedure
RWEl i st Col | ect abl es nyPar anet ers

the parameters of adirective, the parameters mathe subfield parameters of a space or real-time command or parameters
of aECL keyword (limits"on")

Fod Procedur e* myProc
The procedure in which the directive was written

Fud ProcControl Wn* nyProcControl
enum nyProcFl ag
enum my Sour ce
EcTl nt nySt atus
Directive status
Private Types
enum
The source of the directive: manual, procedure, or ground script
Enumerators
gs
manual
proc

enum
aflagindicating if the directiveisin a procedure

3-113 305-CD-042-001

Enumerators

n
y

Include Files
FoEcDi recti ve. h

Preprocessor Macros

_FoEcG oundDi rective_h_
Types

cl ass FoEcG oundDirective

This classis derived from FoEcDirective is represents a directive that is placed in the ground script and is issued from the

ground system, that isthis type of directiveis never found on the spacecraft

Base Classes

public FoEcDirective

Private Data

RWCSt ri ng myKeyword
Represents the keyword for the ground directive

Include Files

FoEcGr oundDi recti ve. h

Preprocessor Macros
_FoEcLabel _h_

Types
cl ass FoEcLabel

This classisaground directive that represents alabel in aprocedure. It allows the user to "goto" the label

Base Classes

publi ¢ FoEcG oundDirective

Public Functions
RWCSt ri ng& Get Nanme(voi d)
Retrieves myName
EcTlnt Get O fset(void)
Retrieves offset
EcTVoi d Junp(voi d)
Jumpsto offset or label name location

EcTVoi d Set Nane(const RWCStri ng&)
sets myName

3-114

305-CD-042-001

EcTVoid Set O fset (ECTInt)
Sets myOffset
Private Data

RWCSt ri ng nyNane
Label Name

EcTlnt nyOfset
Label offset in the procedure

Include Files
FoEcG oundDi recti ve. h

Preprocessor Macros
_FOECRTCommand_h_

Types

cl ass FoEcRTCommand

This classisderived from FOEcGroundDirective. It represents areal-time command. Real-time Commands are commandsto
the spacecraft that are issued from the ground system.

Base Classes

publi ¢ FoEcG oundDirective

Public Functions
RVBIi t Vec& Cet Bi nary(voi d)
Retrieves the binary representation of the command
RWCSt ri ng& Get Mnenoni c(voi d)
retrieves the data base defined command mnemonic of the directive
EcTl nt SetBi nary(voi d)
Sets the binary representation for the directive
EcTVoi d Set Mnenoni c(const RWCStri ng&)
Sets the command mnemonic for the directive
Private Data

RWBi t Vec nyBi nary
The binary representation of the command mnemonic

RWCSt ri ng myMhenoni ¢
the command mnemonic

3-115 305-CD-042-001

Include Files
FoEcDi rective. h

Preprocessor Macros
_FoEcSpaceDirective_h_

Types

cl ass FoEcSpaceDirective

Thisclassis derived from FoEcDirective. It represents a space command. Space Commands are commands to the spacecraft
that are issued from the spacecraft. These commands are either ATC or RTS commands or instrument commands.

Base Classes

public FoEcDirective

Public Functions
EcTInt FigureBinary()
Generates the binary representation of this directive.
RVBI t Vec& Get Bi nary()
Returns the binary.
EcTint Getlnhibitld()
Returns the inhibit id.
RWCSt ri ng& Get Mhenoni c()
Returns the mnemonic.
EcTl nt Get RTSFI ag()
Returns the RTSflag.
EcTVoi d Setlnhibitld(EcTInt)
Setstheinhibit id to the input value.
EcTVoi d Set Mnenoni c(const RWCStri ng&)
Sets the mnemonic to the input value.

EcTVoi d Set RTSFI ag(EcTI nt)
Sets the RTSFlag to the input value.

Private Data
RWBi t Vec nyBi nary
The binary representation of this directive, the format of which is described by the ICD.

EcTInt nylnhibitld
The group id indicating what resource this directive could have an effect on.

RWCSt ri ng myMhenoni ¢
The mnemonic for the directive.

EcTl nt nyRTSFl ag
An indicator specifying if this directive is part of an RTS or not.

3-116 305-CD-042-001

Include Files
FoEcTi ne. h

Preprocessor Macros
_FoEcSpaceTi ne_h_

Types

cl ass FoEcSpaceTi ne
This class represent the time for the commands on the spacecraft. Timeis converted so that when a command
is said to execute every second is is actually every 1.024
seconds.
Base Classes

public FoEcTi me

Public Functions

EcTFl oat Get Conver si onFact or ()
Returns the conversion factor.

EcTVoi d Set Conver si onFact or (ECTFI oat)
Sets the conversion factor to the input value.
Private Data

EcTFl oat mnyConver si onFact or
The numeric factor which converts actual seconds to spacecraft seconds.
Include Files
RWIi ne. h

Preprocessor Macros
_FoEcTinme_h_

Types
cl ass FoEcTi nme
this classis generic for FOS so that all times are derived from the same epoch

Base Classes
public RWIi ne

Public Functions

RWIi me& Get Epoch()
Returns the epoch.

EcTVoi d Set Epoch(const RWi ne&)
Sets the epoch to the input time.

3-117 305-CD-042-001

Private Data
RWIi e nmyEpoch

The epoch upon which thetimeisbased. Timeiscomputed asthe number of seconds since the epoch. The default epoch
for RWTimeis Jan 1, 1901 at 00:00:00.

Preprocessor Macros
_FoMsCMVSSt at us_h_

Types
cl ass FoMsCMSSt at us

Thisclassisused to return processing statusto CM S's external interfaces. It returns status for constraint checking and for load
generation.

Private Data

EcTint nyld

or the Instruction request id that the statusis in response to
RWCStri ng nyStatus

The statusiis either:

conpl ete - everything processed w thout error
pending - the constraint check was conplete with
soft constraints only
failed - constraint violations found were hard constraints
| oad generation failed

Preprocessor Macros
_FoMsConflictinfo_h_

Types
cl ass FoMsConflictlnfo

This class gives the identifying information on constraint violations. It specifiestheid, the command mnemonic, the conflict-
ing command, the time the constraint violation occurred, whether the violation is hard or soft and a textual description of the
violaion

Private Data
RWCSt ri ng nyCndMhenoni ¢
the directive command mnemonic being constraint checked
RWCString nyConflictingCrd
the command that violates the constraint rule

RWIi e nyConstrai nt Ti ne
the time of the constraint

EcTint nyld
the ID represent different things for different constraint checking requests:

- the activity id of a command in a schedul e

- the line nunber of a conmmand in a procedure

- the buffer location of a command in an RTS | oad
contents file

- the PDB activity definitionid

3-118 305-CD-042-001

EcTl nt nySof t Har dFl ag
Indicates if the violatin is hard or soft

RWCString nyViolationlnfo
Textual description of the violation for messaging
Include Files
FoMsCMSSt at us. h

Preprocessor Macros
_FoMsSt at usConpl ete_h_

Types
cl ass FoMsSt at usConpl et e

Represents a good status from constraint checking or load generation

Base Classes
publ i ¢ FoMsCMSSt at us

Include Files
FoMsCMSSt at us. h

Preprocessor Macros
_FoMsSt at usFai l ed_h_

Types

cl ass FoMsSt at usFai | ed
Represents a failed status from constraint checking of load generation

Base Classes
publ i c FoMsCMSSt at us

Include Files
FoMsCMBSt at us. h

Preprocessor Macros
_FoMs St at usPendi ng_h_

Types
cl ass FoMsSt at usPendi ng

Represents a pending status from constraint checking This means that the constraint violations found are all soft constraints.
If CMSisprocessing aDAS, we wait to continue processing of the load until aresponseis received from planning and sched-
uling. If CMSisprocessing an RTS load we wait for aresponse from FUI to continue processing the RTS load.

3-119 305-CD-042-001

Base Classes
publ i c FoMsCMSSt at us

Include Files
FoUi I nstruction. h

Preprocessor Macros
_FoMsVal i dat eProcReq_h_

Types
cl ass FoMsVal i dat ePr ocReq

This message allows the user to request command rule-based constraint checking validation for a procedure. The user, FUI,

fillsin the necessary information and send the class to the FmMsV alidateProcedure proxy.

Base Classes

public FoUilnstruction

Protected Functions
RWCSt ri ng& Get Di rectory(void)
gets myDirectory
RWCSt ri ng& Get ProcNane(voi d)
gets myProcName
EcTVoid SetDirectory(const RACString&)
sets myDirectory

EcTVoi d Set ProcNanme(const RWCStri ng&)
sets myProcName
Private Data
RWCString nmyDirectory
directory where the procedure for constraint checking is located

RWCSt ri ng nyProcNane
procedure name

3-120

305-CD-042-001

3.5 Spacecraft Model

The Spacecraft Model is a persistent process running on the FOS Data Server. It models several
aspects of spacecraft memory, including the ATC buffer, RTS buffers, and data tables. Spacecraft
Model also maintainsabinary image of selected portions of spacecraft memory, includingthe ATC
buffer, RTS buffers, data tables, and SCC flight software.

The ATC buffer model maintained by Spacecraft Model represents the state of the ATC buffer af-
ter aparticular ATC load is uplinked. Spacecraft Model maintains one instance of the ATC buffer
model for each ATC load that is generated by CMS. When an ATC load is successfully uplinked
to the spacecraft, Spacecraft Model replaces its current ATC buffer model with the ATC buffer
model that reflects the uplinked load. Each ATC buffer model consists of alist of commands in-
cluding the absolute time tags and location within the ATC buffer for each command. The buffer
model mimics the wraparound feature of the ATC buffer onboard the AM-1 spacecraft. When an
ATC load isbeing generated, Spacecraft Model usesthe ATC buffer model to determine appropri-
ate partitions of the load based on the predicted contents of the ATC buffer following the previous
load. The ATC buffer model isalso used in generating ATC command-to-memory map reports and
displays.

The RTS buffer model maintained by Spacecraft Model representsthe state of the 128 RTS buffers
onboard AM-1. The RTS buffer model consists of two parts: the RTS load-to-buffer map, which
isalist of the loads most recently uplinked to the 128 buffers; and the RTS command-to-memory
map, which haslists of commands currently loaded in each of the 128 RTS buffers. The RTS |oad-
to-buffer map and command-to-memory map are used in generating the RTS memory map reports
and displays.

The table model maintained by Spacecraft Model represents the state of the data tables onboard
AM-1. In order for atableto beincluded in the table model, it must be defined in the FOS database.
The table model consists of alist of tablesthat are defined in the database and, for each tablein the
list, the name of the load most recently uplinked to that table. The table model isused in generating
the table map report.

Spacecraft Model maintains binary ground reference images of the ATC buffer, RTS buffers, data
tables, and SCC flight software. Whenever a load to one of these areas of memory is uplinked
successfully, the corresponding ground reference image is updated from the load image. Also,
Spacecraft Model will update a ground reference image from a load image or dump image on
request. The ground reference images are used in doing dump comparisons and in generating
reports.

3.5.1 Spacecraft Model Context

The CM S Spacecraft Model interfaceswith FOS User Interface subsystem, the Data Management
subsystem, the CMS Schedule Controller task, and the CMS load catalog as shown in the
Spacecraft Model Context Diagram (see Figure 3.5-1) and summarized below.

3-121 305-CD-042-001

acl-€

T00-¢70-AdD-50€

CMS
Schedule

Controller

A

ATC Buffer Start Time,
ATC Load Data.

Command List,
Buffer Start Time Request

This System

CMS
Load
Catalog

Update Requests,
Delete Requests.

CMS
Spacecraft Model

Buffer Models,
Events.

Report Requests,
Display Requests,
Update Requests.

MemoryDump Files,
Table Formats

CMS Status,
Buffer Lists,
Buffers.

DMS

Figure 3.5-1. Spacecraft Model ontext Diagram

FUI

CMS Schedule Controller:

» Requeststhetime of thefirst command in the most recent predicted buffer. Once constraint
checking has passed, Schedule Controller sendsthe DAS directivelist, the requested uplink
window, the time of the first command used to make the load, and the DAS id.

« Receives alist of load data objects, each of which includes the directive list for the ATC
load to be generated, the name of the load, and the updated uplink window for scheduling.

« Sends an update buffer request to update the buffer status to reflect successful load
generation.

CMS Load Catalog:
« Sendsarequest to update the buffers from predicted to actual.

« Intheevent of alate change, load catal og sends arequest to delete specified predicted ATC
buffer models.

User Interface:

» Sendsarequest toretrievealist of available ATC or RTS buffersfor display. The user may
then select a specific buffer for the ATC or RTS buffer displays.

» Requests the generation of the map reports for the ATC buffer, RTS buffers, and Tables,
comparison reports, and image reports.

« Requests that the ground image be overwritten with a dump image.
Data Management:
« Receives Events, which are status messages about CM S Spacecraft Model processing
« Checkpointsthe ATC and RTS buffers.
« DMS provides the memory dump file and the table formats to Spacecraft Model.

3-123 305-CD-042-001

3.5.2 Spacecraft Model Interfaces

Table 3.5.2. Spacecraft Model Interfaces (1 of 3)

Interface | Interface Class Interface Class Service Service | Frequency
Service Description Provider User
Get ATC | FmSmMapBuff | Proxy between CMS: CMS: 1/day
Buffer er CMS:Schedule Controller | Spacecraft | Schedule
Start and CMS: Spacecraft Model Controller
Time Model.
FmMsATCBuffe | Contains a list of DAS IDs
rinfo and start time of ATC
buffer
Map ATC | FmSmMapBuff | Proxy Between CMS: CMS: 1/day
er CMS:Schedule Controller | Spacecraft | Schedule
and CMS: Spacecratft Model Controller
Model.
FmMsLoadData | Contains list of directives
for one load.
FmMsATCMap | Requestto Map DAS
Request command list into ATC
buffer model and return a
list of loads.
Delete FmSmMapBuff | Proxy Between CMS: CMS: CMS: 1/week
Buffers er Load Catalog and CMS: Spacecraft | Load
Spacecraft Model. Model Catalog
FmMsDeleteAT | Request to delete buffers.
CBuffers
Update FmSmMapBuff | Proxy Between CMS: CMS: CMS: 5/day
Buffer er Load Catalog and CMS: Spacecraft | Load
Spacecraft Model. Model Catalog
FmMsUpdateB | Request to update Buffer
uffer from working to predicted
and then to actual.
Generate | FmMsGenerate | Proxy between FUI and CMS: FUI: 1/month
Compare | Map Spacecraft Model Spacecraft | Control
Report Model Window,
Ground
Script
Controller,
or
Procedure
Controller

3-124

305-CD-042-001

Table 3.5.2. Spacecraft Model Interfaces (2 of 3)

Interface | Interface Class Interface Class Service Service | Frequency
Service Description Provider User
FoMsCompare Request to compare two
Request image files with specified
mask and start address.
FoMsCMSStatu | Status of compare
S reguest.
Generate | FmMsGenerate | Proxy between FUI and CMS: FUI: 1/month
Image Map Spacecraft Model Spacecraft | Report
Report Model Generator
FoMsIimageRpt | Request to publish a
Req report on a given image
file.
FoMsCMSStatu | Status of report request.
S
Generate | FmMsGenerate | Proxy between FUI and CMS: FUI: 1/week
Map Map Spacecraft Model Spacecraft | Report
Report Model Generator
FoMsGenMapR | Publish a report on the
equest given buffer locations
(RTS or ATC).
FoMsCMSStatu | Status of report request.
S
Build FmMsGenerate | Proxy between FUI and CMS: FUI: Table | 5/day
Table Map Spacecraft Model Spacecraft | Builder
Load Model
Contents
from
Dump
FoMsTableData | Request to import dump
Req image for table load
contents building
FoLiLoadConte | Generated Table load
nts contents
Overwrite | FmMsGenerate | Proxy between FUI and CMS: FUI: 5/day
Ground Map Spacecraft Model Spacecraft | Control
Image Model Window

FoMsimageOve
rWrite

Dump image and location
to overwrite

3-125

305-CD-042-001

Table 3.5.2. Spacecraft Model Interfaces (3 of 3)

Interface | Interface Class Interface Class Service Service | Frequency
Service Description Provider User
FoMsCMSStatu | Status of overwrite
s request.
Provide FmMsGenerate | Proxy between FUI and CMS: FUI: 1/week
Buffer Map Spacecraft Model Spacecraft | ATCBuffer
Informatio Model Display or
n RTSBuffer
Display
FmMsBufferRe | Request for buffer
quest information
Provide FmMsGenerate | Proxy between FUI and CMS: FUI: 1/week
Buffer List | Map Spacecraft Model Spacecraft | ATCBuffer
Model Display or
RTSBuffer
Display
FmMsBufferList | Request for all buffers of
Request specified type (ATC,
RTS).
Retrieve FmMsGenerate | Proxy between FUI and CMS: FUI: 5/day
ATC Map Spacecraft Model. Spacecraft | ATCBuffer
Buffer Request for named ATC Model Display
Buffer.
Archive FoFdArchive Proxy between DMS and | DMS: File | CMS: 1/day
Buffer CMS: Spacecraft Manager Spacecraf
Model requesting archiving of the t
buffer model
Send FoFdEventLogg | Proxy between DMS and | DMS: CMS: 10/day
Events er CMS: Spacecraft Event Spacecraf
reqguesting broadcast of a | Logger t
message
Get FoFdGetTableF | Proxy between DMS and | DMS: CMS: 1/day
Table ormat CMS: Spacecraft Sybase Spacecraf
Format requesting a table format t

3-126

305-CD-042-001

3.5.3 Spacecraft Model Object Model

FmSmSpacecraftM odel manages the spacecraft buffer modeling (see Figure 3.5-2 through 3.5-7).
It managesthe ATC buffer model, the RTS buffer models, the Table buffer models and the ground
images. FmSmSpacecraftModel receives the FMMsSATCMapRequest from the CMS Schedule
Controller. When an FmMMSATCMapRequest is received FmSmSpacecraftModel creates an
FMSmMATCBufferModel object from the most recent predicted FMSMATCBufferModel. In the
event of alate change, FmSmSpacecraftModel will delete the predicted FmMSMATCBufferModels
from the avallable list. FmSmSpacecraftModel is responsible for archiving expired
FMSMATCBuUfferModels with DMS, and retrieves the buffers upon a FUI request. The
FmSmMRTSBufferModel and FmSmTableM odel are updated when an FmM sUpdateBuffer. At that
point the FmMmSMRTSBufferModel affected will map the command list into the
FMSMRTSBufferModel; itisalso at this point that the FmSmGroundimage is updated. The RTS
FoLiLoadlmage is written into the ground image, FMSMRTSImage. FmSmTableModel updates
are handled similarly to the FMSMRTSBufferModel. When an FmMsUpdateBuffer isreceived the
FmSmTables are updated with the correct data values and the FmSmGroundlmage,
FmSmTablelmage is updated with the FoLiL oadl mage.

FmMSMATCBufferModel determines the number of command locations available in the buffer,
determines the uplink window for the load, determinesif a DAS needs to be partitioned into more
than oneload, keeps activities from being split, adds safe commandsto the end of the load, updates
the FMSMATCBufferModel status from working to predicted to actual to previous, and generates
an FoRpMapReport upon request. For each partitioned load, FMSMATCBufferModel returns
FmMsLoadData.

FMSMRTSBufferModel manages all of the FMSMRTSBuffers. It requests the particular
FmSmMRTSBuffer to produceits FORpMapReport, it retrieves the requested FMSMRT SBuffer, and
reguests the FMSMRTSBuffer to update itsalf.

FmMSmMRTSBuffer representsasingle RTS buffer. It generatesits FORpM apReport and updatesthe
FmMSmMRTSBuffer with the RTS FoLiL oadContents.

3-127 305-CD-042-001

8¢1-€

T00-¢70-AdD-50€

=

==

FoTiMemoryDump

FmMsGenerateMap

CONTINUED
Proxy with FUI

communicates is retbrleved
with via IPC y

FmSmSpacecraftModel

ArchiveATCBuffer(const RWCString, const EcTIncTVoid
ConvertDumpToBinarylmage(const RWCStringFmSmimage&
ProcessimageReport(const FoMsImageRptReq&EcTVoid
CreateATCBuffer(const FmMnDirectiveList&, const FOSTimelnterval&, const ECTRWSlistCollectable&
DeleteATCBuffers(const FmMsDeleteATCBuffers&cTVoid
GetRecentBuffer(EcTVoid) FmSmATCBufferModel&

HandleMessage(const RWCollectable&EcTVoid

Initialize(EcTVoid). EcTVoid

ProcessCompareRequest(const FmMsCompareRequest&pMsCMSStatus&
ProcessMapReg(const FoOMsGenMapRegest&foMsCMSStatus&
ProcessMemoryDump(const FmMsDumpReportReq&oMsCMSStatus
ProcessTableDump(const FmMsTableDumpReqg&gcTVoid
RetrieveATCBuffer(const RWCString&FoSmATCBufferModel&
RetrieveBuffer(const FmMsBufferRequest&RWCollectable&
RetrieveBufferList(const FmMsBufferListRequest&WSlistCollectable&
SendEventMessage(const RWCString&EcTVoid

UpdateATCModel(const RWCString&)EcTVoid

UpdateBuffer(const FmMsUpdateBuffer&EcTVoid

UpdateRTSModel(const FmMsUpdateBuffer&gcTVoid
UpdateTableModel(const FmMsUpdateBuffer&gcTVoid

==

FoFdEventLogger +

receives event +

messages +

+

FoFdGetTableFormat +

+

—tetrieves formats——

+

FoFdArchive :

receives +

buffers

+

+

+

= +

. +

CslfMessageHandler Sends/Receives .

I/FObjectsFor .

+ Connect() +

+ Disconnect() +
+ Receive()
+ Send()

Figure 3.5-2.

communicates .
with via IPC retrieves

Ees =

FmSmMapBuffer

FoLiLoadlmage

CONTINUED
Proxy with Schedule Controller

Spacecraft Model Object Model (1 of 6)

6¢1-€

T00-¢¥0-dD-S0E

FmSmSpacecraftModel FoRpMapReport
Sends —
FmMsLoadData created by E E
FmSmRTSImage FmSmTablelmage
FmSmATCImage
CONTINUED
CONTINUED
CONTINUED T T CONTINUED
is updated by
FmSmATCBufferModel FmSmRTSBufferModel FmSmTableModel FmSmimage E
FmSmimageReport
creates
CONTINUED CONTINUED CONTINUED CONTINUED
CONTINUED
1+
B =
FmSmRTSBuffer EmSmTable il il
FmSmGroundimage FmSmDumplmage
CONTINUED CONTINUED
T CONTINUED T
1+ CONTINUED generates generates
= 5] = =
® FoSmBufferLocation FoFmDataField FmSmDumpReport FmSmCompareReport
1+
{shared - FMN,FUI} CONTINUED CONTINUED CONTINUED
CONTINUED
FmSmMicroLoadimage FmSmFSWimage

Figure 3.5-3. Spacecraft Model Object Model (2 of 6)

OET-€

T00-¢70-AdD-50€

FmMsLoadData

myUplinkWindow : FOSTimelnterval FmSmSpacecraftModel
myDirListAddr : EcTInt | created by—|
myDirectiveList : FmMnDirectiveList
myLoadName : RWCString
CONTINUED
is updated by el
FmMSmRTSBufferModel
- myNumberOfBuffers : EcTInt
+ GenerateMapReport(const FoMsGenMapRequest&): EcTVoid
+ RetrieveBuffer(const Ectint) : FmSmRTSBuffer&
E + UpdateModel(const FmMsUpdateBuffer): EcTVoid
FmSmATCBufferModel
- myDASIdList : RWSlistCollectable 1+
- myEndLoc : EcTInt B
- myLastCmdLoc : EcTInt EFmSmRTSBuffer
- myLoadName : RWCString
- myNumber of SafeCmds : EcTInt - myBufferld : EcTInt
- mySafeCommands : FmMnDirectiveList - myCriticalFlag : EcTInt
- myStartLoc : EcTInt - myCurrentLoad : RWCString
- myTime : FOSTimelnterval - mylnhibitid : EcTInt
- myType : EcTInt (previous, working, predicted, actual)
- myUplinkwindow : FOSTimelnterval + GenerateMapReport(EcTVoid) : ECTVoid
+ UpdateBuffer(const FmMsUpdateBuffer&): EcTVoid
+ AddSafeCommands(const EcTInt): EcTVoid + VerifyAuthorization(EcTVoid) : EcTVoid
+ AssignCommandLocations(const EcTInt&, FoEcSpaceDirective&) EcTInt
+ BuildBuffer(const FOSTimelnterval&, const FmMnDirectiveList&, EcTInt&; EcTInt
FmMsLoadData&)
+ DetermineActForBuffer(const EcTInt, const FmMnDirectiveList&). EcTInt
+ DetermineLoad(FmMsLoadData&) : EcTVoid
+ DeterminePartitionUplinkWindow(const FoEcSpaceDirective&, FmMsLoadData&) EcTVoid 1+
+ DetermineUplinkWindow(const FOSTimelnterval&, const FoEcSpaceDirective; EctVoid o
FmMsLoadData&)
+ GenerateMapReport(EcTVoid) : EcTVoid FoSmBufferLocation
+ LocationsAvailable(const FoEcSpaceDirective&): ECTInt& -
+ Partition(FmMnDirectiveList&, EcTInt&, FmMsLoadData&): Ectint) myLocatlon_ : E(_:Tlnt i
+ UpdateDirectiveList(FmMnDirectiveList&): EcTVoid 1+ - mySpaceDirective : FoEcSpaceDirective
+ UpdateModel(const RWCString&) : EcTVoid [

Figure 3.5-4.

{shared - FMN,FUI}

Spacecraft Model Object Model (3 of 6)

TET-€

T00-¢¥0-dD-S0E

FmSmMRTSImage

FmSmTablelmage

- myBufferld : EcTint

- myName :RWCString

FmSmSpacecraftModel
T
CONTINUED FmSmATCImage
FmSmTableModel FmSmImage FmSmimageReport
[~ creates — myReportName : RWCString
+ GenerateMap(const FoMsGenMapRequest&) : EcTVoid + GenerateReport(FmMsimageRptReq) : EcTVoid
+ RetreiveTable(const RWCString&) : FmSmTable&
+ UpdateModel(const FmMsUpdateBuffer&) : EcTVoid
JARN FmSmMicroLoadImage

FmSmTable

myCurrentLoad : RWCString
myEndingLocation : EcTint
myTableFormat : FoFmTableFormat
myOwner : RWCString

mySize : EcTInt

myStartLocation : EcTInt

GenerateMapReport(EcTVoid) : EcTVoid
UpdateTable(const FmMsUpdateBuffer&) : EcTVoid

FoFmDataField

- myDataUnits : RWCString

- myDefaultvalue : <template>

- myFieldDescriptor : RWCString
- myFieldNumber : EcTInt

- myHighRangeValue : <template>
- myLowRangeValue : <template>
- myRangeCheckFlag : EcTInt

- myScaleFactor :EcTInt

- myTableNumber : EcTInt

- myValueBitSize :EcTInt

- myValueOverrideFlag : EcTInt
- myValueType :RWCString

+ ProduceBinary() :RWBItVec

Figure 3.5-5.

FmSmGroundimage

FmMSMFSWimage

+ Updatelmage(const FmMsUpdateBuffer&)

+ RetrieveRTS(const EcTInt) : FmSmRTSImage&
+ RetrieveTable(const RWCString) : FmSmTablelmage&

: EcTVoid

T

FmSmDumplmage
+ CompareDumpWithDefaults(RWString) : EcTVoid
+ ConvertDumptoContents(const FoMsTableDataReq&) : FoLiLoadContents&
+ GenerateReport(const FmMsimageRptReq&) : EcTVoid
generates generates
FmSmDumpReport FmSmCompareReport FoLiLoadContents
- myReportName : RWString - myReportName : RWString

Spacecraft Model Object Model (4 of 6)

ceT-€

T00-¢70-AdD-50€

proxy with FUI

FmMsGenerateMap
+ CreateConnection(EcTVoid) : EcTInt
+ DestroyConnection(EcTVoid) : EcTVoid
+ GenerateCompareReport(const FoMsCompareReq&) : FOMsCMSStatus&
+ GeneratelmageReport(const FoMsimageRptReq&) : FOMSCMSStatus&
+ GenerateMapReport(const FoMsGenMapRequest&) : FOMsCMSStatus&
+ GetATCBuffers(EcTVoid) : RWSlistCollectables&
+ GetRTSBuffers(EcTVoid) : RWSlistCollectables& E
+ ImportTableDump(const FoMsTableDataReq&) : FoLiLoadContents&
+ OverwriteGroundimage(const FoMsimageOverWrite&) : FOMsCMSStatus& _vsigrl‘gs(;;_ FoMsimageRptReq
+ Receive(EcTVoid) : FOMsSCMSStatus& N - " -
+ RequestBuffer(const FmMsBufferRequest&) : RWCollectable& . zymfcéﬁgrﬁzwg\fgg?rin
+ RequestBufferList(const FmMsBufferListRs) : RWSlistCc & ~ myRe %nName N RWCString
+ RetrieveATCBuffer(const RWCString&) : RWCollectable& yRep) 9
+ RetrieveRTSBuffer(const EcTInt) : RWCollectable&
+ Send(const RWCc) : FOMsCN &
sends via IPC
sends via IPC sends via IPC sends via IPC
FmMsBufferListRequest FoMsGenMapRequest
- mylLoadType : enum(ATC, RTS) ~ myBufferld : EcTint
- myEndLocation : EcTInt = 2999 Sgnlgsc
=] - myLoadName : RWCString i
receives FmMsBufferRequest - myMapType enym {ATC,RTS} sends via
via IPC - myStartLocation : EcTInt =0 PC
- myBufferType : enum{ATC,RTS}
- myLoadName : RWCString&
- myRTSBufferld : EcTInt E
FoMsTableDataReq bl is re”c;iEde
via y
- myDump : String FoMsImageOverWrite
- myDirectory : String - -
) . - myDumpName : RWCString
1 'elgec“’gd - myStartAddres : EcTInt
via Yy {shared - FMN,FUI})) - myStopAddress : EcTInt
is received
via IPC by Pl
Iiiraeﬁfggg) ved FoMsCompareMask
is receive
via IPC by is received - myEndAddress : EcTInt
Via IPC by - myStartAddress : EcTInt
FoMsCMSStatus E
T myld : EcTint FmSmSpacecraftModel
- myStatus : RWCString is sent via IPC by- E
FoMsCompareReq
is received
via IPC by - myEndAddress : EcTInt
- mylmageFilel : RWCString
CONTINUED - mylmageFile2 : RWCString
- myStartAddress : EcTInt=0
- myType : enum(ATC,RTS,TAB,FWS,MP)

Figure 3.5-6. Spacecraft Model Object Model (5 of 6)

eeT-€

T00-¢70-AdD-50€

E CONTINUED

FmSmSpacecraftModel
sends via IPC
receives via IPC E
FmMsATCBufferinfo
receives - :
receives e myD.ASIdLISt : F\"WShstcolleclable
via IPC - myTime :FoEcTime
creates/sends
via IPC il
E FmMsUpdateBuffer
FmMsATCMapRequest
- myBufferlD : EcTInt

- myDASId :EcTint - myEndLocation : EcTInt

- myDirList : FmMnDirectiveList - myLoadName :RWCString

- myTime :FoEcTime - myStartLocation : EcTInt

- myUplinkWindow : FOSTimelnterval - myTableName :RWCString

- myType :EcTInt
=] Receives
via IPC
FmMsLoadData =
- myDirListAddr : EcTint FmMsDeleteATCBuffers
- myDirectiveList : FmMnDirectiveList -
- myLoadName :RWCString is sent - myLoadNames : RWSlistCollectable
- i i : i i creates/
myUplinkwWindow : FOSTimelnterval via IPC centeveIPC
T is sent
receives via IPC
via IPC
FmSmMapBuffer

+ CreateConnection(EcTVoid) : EcTInt

+ DeleteBuffers(const RWSlistCollectables&) : EcTVoid

+ Destroy(EcTVoid) : EcTVoid

+ GetATCBufStartTime(const FoEcTime&) : FmMsATCBufferinfo

+ MapATC(const FmMnDirectiveList&, const FOSTimelnterval&, const FOEcTime&, : RWSilistCollectables&

+

+ o+ +

EcTint)

MapLateChange(const FmMnDirectiveList&, const FOSTimelnterval&, const FoEcTime&,
EcTint)

Receive(EcTVoid) : RWSlistCollectables&
Send(const RWCollectable&) : EcTVoid
UpdateBuffer(const FmMsUpdateBuffer&) : EcTVoid

: RWSlistCollectables&

proxy with ScheduleController & Load Catalog

Figure 3.5-7. Spacecraft Model Object Model (6 of 6)

FoSmBufferLocation represents a single buffer location for either an FMSMRTSBuffer or an
FMSmMATCBufferModel.

FmSmTableModel manages all of the FmSmTables. It retrieves aparticular FmSmTable, requests
FmSmTable to generate its FORpM apReport and requests the FmSmTable to update its model.

FmSmTable represents asingle table. It generatesits FORpMapReport and updates itself with the
with the Table FoLiL oadContents.

FoFmDataField represents asingle datafield in a FmSmTable.

FmSmImage represents an abstract class for the FmSmGroundimage and the FmSmDumpl mage.
A FmSmGroundimage consists of an FmMSmMmRTSImage, an FMSMATCImage, and a
FmSmTablelmage. A FmSmDumplmage consists of these three and a FmSmMicroL oadimage
and a FmSmFSWImage.

FmSmGroundimage represents the following spacecraft images. RTS, ATC, and Table. It is
responsible for updating the respective image when an FmMsUpdateBuffer is received.
FmSmDumplmage is responsible for comparing the values in a table dump to their corresponding
default values in DMS, generating a FmSmDumpReport on a specified dump file and for
converting a specified table dump into a FoLiLoadContents. FmSmDumplmage receives
FoMsimageRptReq when generating a FmSmDumpReport and FoMsTableDataReq when
converting a dump to a FoLiL oadContents.

FmSmMRTSImage represents an image of a single RTS buffer. This class is used for both the
ground images and the dump images

FmSmMATCImage represents an image of the ATC buffer. Thisclassis used for both ground and
dump images

FmSmTablel mage represents an image of asingle table. This classis used for both ground and
dump images.

FmSmM icroL oadl mage represents a dump image for a single microprocessor.

FmSmFSWImage represents a dump image for a single flight software image.
FmSmDumpReport represents the report generated from an FoM slmageRptReq.
FmSmCompareReport represents the report generated from an FoM sCompareReq.

FmMsL oadDataincludestheinformation for generating an ATC load. It hasthedirectivelist from
the DAS that will fit into the buffer, it includes the uplink window, the load name and the address
of the next command to be included in a partitioned load.

FMMSATCMapRequest includes information for processing the DAS command list. It includes
the DASId, the DAS directive list, the time of the first command to be included in the buffer, and
the requested uplink window.

FmMsDeleteATCBuUffers is the message received by FmSmSpacecraftModel to delete the
predicted FMSMATCBufferModels.

FmMsUpdateBuffer is sent to FmSmSpacecraftModel to update the status of the
FMSMATCBufferModel, the FmSmRTSBufferModel, the FmSmTableModel. It will update the
FmMSMATCBufferModel from a working status buffer to a predicted status buffer and update a
predicted status buffer to the actual FmMSMATCBuUfferModel. The FmMSMRTSBufferModel and the

3-134 305-CD-042-001

FmSmTableModel are updated from the FoLiLoadContents. The FmSmGroundimages for the
FMSmMATCBufferModel, the FMSMRTSBuffers and the FmSmTables are also updated from this
FmMsUpdateBuffer request.

FMMSATCBuUfferInfo is sent by FmSmSpacecraftModel in response to a request from CMS
Schedule Controller. It returnsinformation on the most recent predicted FmMSMATCBufferMode.
The information returned, the DAS id list of a buffer, and the time of the first command in the
buffer is used for constraint checking the DAS command list about to be processed.

FmSmMapBuffer is a proxy class used internally by CMS. Both CMS Schedule Controller and
CMS Load Catalog incorporate this class. It performs the interprocess communication between
these processes and FmSmSpacecraftModel, allowing the buffers to be created, updated, and
deleted. FmSMmMapBuffer creates FMMSATCMapRequest, FmMsDeleteATCBuffers, and
FmMsUpdateBuffer. It receives FmMsLoadData and FmMSATCBufferinfo.

FmMsGenerateMap is a proxy class used by FUI to request information from
FmSmSpacecraftModel model for display and reporting information. It creates
FmMsBufferRequest and FmMsBufferListRequest and receives the following objects:
FoMsTableDataReq, FoMslmageRptReq, FoMsimageOverWrite, FoMsCompareReq and
FoMsGenMapRequest which are sent to FmSmSpacecraftModel. It receives FoMsCM SStatus
from FmSmSpacecraftModel.

FmMsBufferRequest is the class that requests a specific FmSmATCBufferModel or
FmMSmMRTSBuffer from FmSmSpacecraftM odel.

FmMsBufferListRequest is a request to FmSmSpacecraftModel to return the list of available
FMSMRTSBuffers or FMSMATCBufferModels.

FoMsGenMapReqguest is a request to FmSmSpacecraftModel to generate a FORpMapReport for
the specified buffer, either FMSMATCBuUfferModel, FmSMmRT SBuffer(s), or FmSmTable(s).

FoMsTableDataReq is sent from FUI. It isarequest from the table load builder to import a table
FoTIMemoryDump and convert it into a table FoLiL oadContents.

FoMsimageOverWrite is sent from FUI. It is a request to overwrite a portion of the
FmSmGroundlmage with either a FoLiL oadlmage or a FmSmDumplmage.

FoMslmageRptReq is sent from FUI. It isarequest to generate an FmSmI mageReport.

FoMsCompareReq is sent from FUI. Itisarequest to generate a FmSmCompareReport. The user
can compare any two image files.

FoMsCompareMask is part of FoMsCompareReq. It alows the user to select a portion of the
image files not to compare.

3-135 305-CD-042-001

3.5.4 Spacecraft Model Dynamic Model
The Spacecraft Model had the following scenarios:

e Initiaization

e ATC Load Generation

e ATC Buffer Model Update

« ATC Buffer Model Deletion

« ATC Buffer Display Request

« RTSBuffer Display Request

« Map Report Generation

« Image Report Generation

« Compare Report Generation

« TableModel & Image Update

« RTSBuffer Model & Image Update

« ATC Buffer Model & Image Update

« Flight Software Image Update

« Table Data Request

« Ground Image Overwrite

3.5.4.1 Initialization Scenario

3.5.4.1.1 Initialization Scenario Abstract

This scenario occurs when the Spacecraft Model processis started (see Figure 3.5-8). It addresses
theinitialization of the Spacecraft interfaces and loading of configuration files.

3.5.4.1.2 Initialization Summary Information
Interfaces:

- DMS
Stimulus:

» Spacecraft Model processis started

3-136 305-CD-042-001

LET-E

T00-¢70-AdD-50€

FmSmSpacecraftModel

DMS

request connection

request configuration & startup files

J/\

listen for
other_
connections

@

Figure 3.5-8. Spacecraft Model Initialization Event Trace

read configuration & startup files

Desired Response:

e Spacecraft Model is up and running
Pre-Conditions:

« DMS software has been initiated
Post-Conditions:

e Spacecraft Model is ready to process requests

3.5.4.1.3 Initialization Scenario Description

When the Spacecraft Model is started FmSmSpacecraftModel will initialize its interfaces by
requesting address information from the Name Server. Once the interface connections have been
made FmSmSpacecraftModel will read in the current list of ATC buffers, RTS buffers, tables,
ground images and it will read in the "safe" commands from DMS.

3.5.4.2 ATC Load Generation Scenario

3.5.4.2.1 ATC Load Generation Scenario Abstract
The ATC Load Generation scenario describesthe receipt and processing of an Expanded Directive
List from CMS Schedule Controller (FmScScheduleController) via FmMsValidateConstraints
proxy (see Figure 3.5-9).
3.5.4.2.2 ATC Load Generation Summary Information
Interfaces:
« CMS Schedule Controller
Stimulus:
+ Receipt of DAS Expanded Directive List
Desired Response:
« ATC commands are mapped into the buffer
Pre-Conditions:
« Schedule controller software has been initiated
« Spacecraft model software has been initiated
Post-Conditions:
« Working ATC Buffer Model is created.

3-138 305-CD-042-001

6ET-€

T00-¢70-AdD-50€

CMS Schedule FmSmM

apBuffer

Controller (internal Proxy for CMS) FmSmSpacecraft

requests time to start S
Constraint Checking

< returns start time for
constraint checking

————request command mapping ———>>

I<&<——returns list of partioned ATC loads

FmSmATCBufferModel

Figure 3.5-9. Spacecraft Model ATC Load Generation Event Trace

sends start time >
of DAS
returns start timefor
< Constraint Checking
requests map—— >
creates
returns
<< buffer
<&——returns partitions——

maps

3.5.4.2.3 ATC Load Generation Scenario Description

The Spacecraft Model receives arequest viaFmSmMapBuffer to determine the buffer that the new
DAS being processed will beinput. The start time of this buffer is returned to the CM S Schedule
Controller so that the DAS can be constraint checked. The constraint free expanded directive list
from the DAS is sent to the Spacecraft Model from the Schedule Controller. The Spacecraft
Model sends the directive list to the ATC buffer, which maps the commands into the buffer and
determines the uplink window. For each partition a FmMsLoadData is returned.

3.5.4.3 ATC Buffer Model Update Scenario

3.5.4.3.1 ATC Buffer Model Update Scenario Abstract

The Spacecraft Model receives an Update Buffer request from the CMS Schedule controller or
CMS Load Catalog. Based on the request the ATC buffer statusis updated from aworking buffer
to a predicted buffer or from a predicted buffer to and actual buffer. When the request is received
that changes the status from predicted to actual, the current actual buffer is updated to previous
status (see Figure 3.5-10).

3.5.4.3.2 ATC Buffer Model Update Summary Information
Interfaces:

 CMS Schedule

e CMSLoad Catalog
Stimulus:

e Receipt of Update Buffer request
Desired Response:

e Buffer model isupdated to reflect new status
Pre-Conditions:

« Schedule Controller software has been initiated

e Load Catalog software has been initiated

e Spacecraft model software has been initiated
Post-Conditions:

e ATC Buffer Models are updated

3-140 305-CD-042-001

wi-€

T00-¢70-AdD-50€

CMS Schedule
Controller

FmLdLoadCatalog

requests lidate of

FmSmMapBuffer
(internal Proxy for CMS) FmSmSpacecraft

working buffer to
predi¢ted

requests up

predicted buffe

updates buffer——=>

jate of >
to actual

Figure 3.5.10. Spacecraft Model ATC Buffer Model Update Event Trace

DMS
archives
———— expired —————>>
buffers

3.5.4.3.3 ATC Buffer Model Update Scenario Description

The ATC Buffer Model Update scenario describes the receipt of an FmSmUpdateBuffer request
from either CMS Schedule Controller or CMS Load Catalog via FmSmMapBuffer proxy. The
Spacecraft Model receives arequest via FmSmMapBuffer.

When the new load is successfully generated, the CMS Schedule Controller requests that the
working buffer be updated to predicted buffer status. When the load is successfully uplinked, the
CMS Load Catalog requests that the buffer be updated to be the actual buffer model.

3.5.4.4 ATC Buffer Model Deletion Scenario

3.5.4.4.1 ATC Buffer Model Deletion Scenario Abstract

The Spacecraft Model receives the request to delete ATC buffers from CMS Load Catalog via
FmSmMapBuffer proxy (see Figure 3.5-11). Therequest ismade asaresult of alate change. The
predicted status ATC buffers are del eted.

3.5.4.4.2 ATC Buffer Model Deletion Summary Information
Interfaces:
e CMSLoad Catalog
Stimulus:
¢ Receipt of Buffer Delete Request
Desired Response:
« Buffer(s) are deleted
Pre-Conditions:
« CMS Load Catalog software has been initiated
e Spacecraft model software has been initiated
Post-Conditions:
» Predicted status ATC buffer models are deleted

3.5.4.4.3 ATC Buffer Model Deletion Scenario Description

CMS Load Catalog requests ATC Buffer deletion viathe FmMsMapBuffer proxy. The Spacecraft
Model deletes the predicted ATC buffer models.

3.5.4.5 ATC Buffer Display Scenario

3.5.4.5.1 ATC Buffer Display Scenario Abstract

The Spacecraft Model receivesthe requeststo provide abuffer list and to provide aspecified buffer
based on a selection from that list (see Figure 3.5-12). Thisinformation isused by FUI to provide
the ATC buffer display for the user.

3-142 305-CD-042-001

evi-€

T00-¢70-AdD-50€

CMS Load
Catalog

(internal Proxy for CMS)

request predicted

buffer deletion

FmSmMapBuffer

%

requests
deletion

FmSmSpacecraft

H

FmSmATCBufferModel

deletes buffer————=>

Figure 3.5-11. Spacecraft Model ATC Buffer Model Deletion Event Trace

i€

T00-¢70-AdD-50€

FUI

{Proxy with FUI}

<<—returns list———

requests specific >
buffer

<<— returns buffer

FmSmGenerateMap

sends
| FmMsBufferListRequest >

<<——returns list———

sends
| FmMsBufferRequest =

<<— returns buffer

FmSmSpacecraft

FmSmATCBufferModel

retrieves buffer ———=

Figure 3.5-12. Spacecraft Model ATC Buffer Display Event Trace

3.5.4.5.2 ATC Buffer Display Summary Information
Interfaces:

« FUI
Stimulus:

» Receipt of Buffer List Request

» Receipt of Buffer Request
Desired Response:

« Buffer listisreturned for display

« Bufferisreturned for display
Pre-Conditions:

« Spacecraft Model software has been initiated
Post-Conditions:

* None

3.5.4.5.3 ATC Buffer Display Scenario Description

FUI sends requests viathe FmMsGenerateM ap proxy. The ATC buffer display will first request a
list of available ATC buffers, then it will request a specific buffer for display. The ATC buffer list

isthelist of predicted and actual status ATC buffers.
3.5.4.6 RTS Buffer Display Scenario
3.5.4.6.1 RTS Buffer Display Scenario Abstract

The Spacecraft Model receivestherequeststo provide abuffer list and to provide aspecified buffer
based on a selection from that list (see Figure 3.5-13). Thisinformation isused by FUI to provide

the RTS buffer display for the user.

3.5.4.6.2 RTS Buffer Display Summary Information
Interfaces:

« FUI
Stimulus:

» Receipt of Buffer List Request

3-145

305-CD-042-001

orl-€

T00-¢70-AdD-50€

{Proxy with FUI}

FUI FmSmGenerateMap FmSmSpacecraft FmSmRTSBufferModel
requelzis;tbuffer >
_FmMsBu?fg?I?igtRequest>
<<——returns list———
<<——returns list———
_requesltjs%f ZEeCiﬁC%
_FmMsBsuefPedrsRequest»
requests buffer——=>
retrieves buffer———=>
<<——returns buffer
<<——returns buffer
<<——returns buffer
<<——returns buffer

Figure 3.5-13. Spacecraft Model RTS Buffer Display Event Trace

FmSmRTSBuffer

» Receipt of Buffer Request
Desired Response:

« Buffer listisreturned for display

« Bufferisreturned for display
Pre-Conditions:

« Spacecraft Model software has been initiated
Post-Conditions:

 None

3.5.4.6.3 RTS Buffer Display Scenario Description

FUI sends requests viathe FmMsGenerateM ap proxy. The RTS buffer display will first request a
list of available RTS buffers, then it will request a specific buffer for display. Thislist of available
RTS buffersisall of the 128 AM-1 RTS buffers.

3.5.4.7 Map Report Generation Scenario

3.5.4.7.1 Map Report Generation Scenario Abstract
The Spacecraft Model receives the request to generate a map report (see Figure 3.5-14).

3.5.4.7.2 Map Report Generation Summary Information
Interfaces:

« FUI

- DMS
Stimulus:

« Receipt of Map Report Generation Request
Desired Response:

« Map Report is generated for specified Model (ATC, RTS or Table)
Pre-Conditions:

« Spacecraft model software has been initiated
Post-Conditions:

« Report is generated and stored in requested location.

3-147 305-CD-042-001

8v1-¢

T00-¢70-AdD-50€

FmSmGenerateMap

FUI

| __sends generate
report request

—=>

(proxy) FmSmSpac

—sends request —>>

FmSmMATCBufferModel

ecraftModel

processes
request

P

|_request ATC map
report >

request RTS

I'q

FmSmRTSBuffer

map report———>>

quest Table map report

Figure 3.5-14. Spacecraft Model Map Report Event Trace

stores r

FmSmTable

DMS

eports

3.5.4.7.3 Map Report Generation Scenario Description

FUI send a request to generate a Map report via the FmMsGenerateMap proxy. The
FmSmSpacecraftM odel model requests the ATC buffer model, RTS buffer model or Table model
to produce the report.

3.5.4.8 Image Report Generation Scenario

3.5.4.8.1 Image Report Generation Scenario Abstract
The Spacecraft Model receives the request generate an image report (see Figure 3.5-15).

3.5.4.8.2 Image Report Generation Summary Information
Interfaces:

« FUI
Stimulus:

« Receipt of Image report request
Desired Response:

« Image report is generated for specified ground image (ATC, RTS, or Table)
Pre-Conditions:

« Spacecraft model software has been initiated
Post-Conditions:

* None

3.5.4.8.3 Image Report Generation Scenario Description

FUI sends an Image report request viathe FmM sGenerateM ap proxy. Spacecraft model retrieves
the proper image and produces the report.

FUI sends an Image overwrite request to the Spacecraft model viathe FmMsGenerateM ap proxy.
The appropriate ground image is overwritten with the specified dump image.

3.5.4.9 Compare Report Generation Scenario

3.5.4.9.1 Compare Report Generation Scenario Abstract

The spacecraft model receives the request generate a comparison report (see Figure 3.5-16). The
compare can be performed on any combination of images. load and ground.

3.5.4.9.2 Compare Report Generation Summary Information
I nterfaces:
« FUI

3-149 305-CD-042-001

0sT-€

T00-¢70-AdD-50€

FUI FmSmGenerateMap
v (proxy) FmSmSpacecraftModel FmSmimage
sends generate
| report request >
I—sends request—=>>
processes

request

request image S

report
request ATQ
report
reque

5t RTS image repg

FmSmATCImage

image S

request Table image report

FmMSmMRTSImage

FmSmTablelmage

Figure 3.5-15. Spacecraft Model Image Report Event Trace

stores reports

DMS

TGT-€

T00-¢70-AdD-50€

FmSmGenerateMap
(proxy)

FUI

report request

| __sends generate

—>

send

——sends request—>

FmSmSpacecraftModel

—retrieve images—=

status

compare &
build
report

stores r

send event

FmSmimage

Pports——>>

message————— >

DMS

Figure 3.5-16. Spacecraft Model Compare Report Event Trace

Stimulus:
« Receipt of Compare request
Desired Response:
« Compare report is generated
Pre-Conditions:
« Spacecraft model software has been initiated
Post-Conditions:
« Compare report is generated and stored in requested location.

3.5.4.9.3 Compare Report Generation Scenario Description

FUI sends a Compare request to the Spacecraft model via the FmMsGenerateMap proxy.
FmSmSpacecraftModel compares two image files and produces a report.

3.5.4.10 Table Model & Image Update Scenario

3.5.4.10.1 Table Model & Image Update Scenario Abstract

The spacecraft model receives the update buffer message from the CM S Load Catal og, queriesthe
Table model to retrieve the correct table and updates the table model with the load contents (see
Figure 3.5.17). Once the table model is updated the ground image is updated to reflect the new
data. The Ground Image retrieves the correct table image and updates it with the specified table
load imagefile.

3.5.4.10.2 Table Model & Image Update Summary Information
Interfaces:
« CMSLoad Catalog
Stimulus:
« Receipt of Update Buffer Request
Desired Response:
« Tablemodel isupdated to reflect load content datafield values
« Table ground image is updated
Pre-Conditions:
« Load Catalog software has been initiated
« Spacecraft model software has been initiated
Post-Conditions:
* None

3-152 305-CD-042-001

eqtr-€

T00-¢70-AdD-50€

CMS Load Catalog

sends update buffer
request message

FmSmMapBuffer
(proxy)

—

FmSmSpacecraftModel

sends update buffer
messages

—

request ground image
update >

processes updat

FmSmGroundimage

FmSmTal

buffer request ————————— >

bleModel

[—— retrieves table ————>>

retrieves table ground image

FmSmTable

updates
model

FmSmTablelmage

pdates ground image with load image

Figure 3.5-17. Spacecraft Model Table Model & Image Update Event Trace

3.5.4.10.3 Table Model & Image Update Scenario Description

The table model & image update scenario describes the receipt and processing of an update buffer
request from CMS Load Catalog via FmSmMapBuffer proxy. When the load is successfully
uplinked the table model is updated. The Spacecraft Model receives a request via
FmSmMapBuffer to determine the table that the uplink load affects. Once the table model is
updated, the table ground image is updated. FmSmGroundlmage retrieves the appropriate table
and updates the image with the load image file produced by FoLiL oad.

3.5.4.11 RTS Buffer Model & Image Update Scenario

3.5.4.11.1 RTS Buffer Model & Image Update Scenario Abstract

The spacecraft model receives the update buffer message from the CM S Load Catal og, queriesthe
RTS model to retrieve the correct RTS buffer and updates the RTS buffer with the load contents,
which isthe directive list (see Figure 3.5-18). Once the RTS buffer is updated the ground image
is updated to reflect the new data. The Ground Image retrieves the correct RTS buffer image and
updates it with the specified RTS load imagefile.

3.5.4.11.2 RTS Buffer Model & Image Update Summary Information
Interfaces:

e CMSLoad Catalog
Stimulus:

¢ Receipt of Update Buffer Request
Desired Response:

« RTSBuffer model is updated to reflect load content

e RTSbuffer ground image is updated
Pre-Conditions:

e Load Catalog software has been initiated

e Spacecraft model software has been initiated
Post-Conditions:

* None

3-154 305-CD-042-001

qqr-€

T00-¢70-AdD-50€

FmSmMapBuffer

CMS Load Catalog (proxy) FmSmSpacecraftModel FmSmGroundimage FmSmRTSBufferModel FmSmRTSBuffer FmSmRTSImage

sends update buffer
request message >

sends update buffer
message >

———— processes updag buffer request——>>

retrieves RTS Buffer—>>|

updates
buffer

request ground image
update >

ratrieves RTS buffer ground imag >>

updates ground image with load im: >>

Figure 3.5-18. Spacecraft Model RTS Model & Image Update Event Trace

3.5.4.11.3 RTS Buffer Model & Image Update Scenario Description

The RTS buffer model & image update scenario describes the receipt and processing of an update
buffer request from CM S Load Catalog viaFmSmM apBuffer proxy. When theload is successfully
uplinked the RTS buffer model is updated. The Spacecraft Model receives a request via
FmSmMapBuffer to determine the RTS buffer that the uplink load affects. Once the RTS buffer
isupdated, the RTS buffer ground image isupdated. FmSmGroundl mage retrievesthe appropriate
RTS buffer and updates the image with the load image file produced by FoLiLoad.

3.5.12.1 Table Data Request Scenario

3.5.12.1.1 Table Data Request Scenario Abstract

The spacecraft model receives the Table Data Request from the FUI, retrieves the table dump and
table format from DMS, reverse-engineers the dump data into load contents and returns the load
contents to FUI (see Figure 3.5-19).

3.5.12.1.2 Table Data Request Summary Information
Interfaces:

 FUI

« DMS
Stimulus:

» Receipt Table Data Request
Desired Response:

« Tabledump isreverse-engineered to table load contents
Pre-Conditions:

« Schedule controller software has been initiated
Post-Conditions:

« Tableload contents are created for use in FUI's table builder

3.5.4.12.3 Table Data Request Scenario Description

The table data request receipt scenario describes the receipt and processing of a
FoMsTableDataReq from FUI via FmSmGenerateM ap proxy (see Figure 3.5-20). The Spacecraft
Model receives the request via FmSmGenerateMap to determine the table dump that is used to
create the load contents. The EDU header information is stripped from the Dump data, then the
binary dump data is extracted according to the FoFmTableFormat retrieved from DMS. The load
contents are created and returned to FUI.

3-156 305-CD-042-001

LST-€

T00-¢70-AdD-50€

FmSmDumplmage

FmSmGenerateMap
FUI (proxy) FmSmSpacecraftModel
DMS
sends table S
data request
—sends request—==
—sends request—>>
| requests table >
format
<<—sends format—
convert
dump

.|

< return load

contents

< return load

contents

< return load
contents

Figure 3.5-19. Spacecraft Model Table Data Request Event Trace

84T-€

T00-¢70-AdD-50€

FUI

sends ground image
overwrite request

FmSmGenerateMap
(proxy)

—>

FmSmGroundimage

FmSmSpacecraftModel DMS
sends request ——>>|
sends request with dump file ——=>
request dump file ———>>
<&———sends dump file ———
retrieves
specified

ground image

H

]

overwrites
ground image
with dump image

E—

GROUND IMAGE OVERWRITE

Figure 3.5-20. Spacecraft Model Ground Image Overwrite Event Trace

3.5.4.13 Ground Image Overwrite Receipt Scenario
3.5.4.13.1 Ground Image Overwrite Receipt Scenario Abstract

The spacecraft model receives the ground image overwrite request from the FUI, overwrites the
specified ground image with the load image.

3.5.4.13.2 Ground Image Overwrite Summary Information
Interfaces:

« FUI
Stimulus:

« Receipt of Ground Image Overwrite request
Desired Response:

« Change ground image to reflect request
Pre-Conditions:

« Schedule controller software has been initiated
Post-Conditions:

e Ground Image is overwritten

3.5.4.13.3 Ground Image Overwrite Scenario Description

The spacecraft model receives the ground image overwrite request, FoMslmageOverWrite from
the FUI viaFmM sGenerateM ap proxy. FmSmGroundl mage retrieves the specified ground image:
either the ATC image, one of the RTS images or one of the Table images. FmSmGroundimage
then overwrites the specified ground image with the either the specified load image or the specified
dump image.

3-159 305-CD-042-001

3.5.5 Spacecraft Model Data Dictionary

Preprocessor Macros
_FMVBATCBuUfferinfo_h_

Types
cl ass FMVBATCBuf ferl nfo

This class represent the information returned to the proxy upon the complete processing of a GetATCBufStartTime. Thetime
and the DAS id list are used to determine the commands necessary for constraint checking

Public Functions

RWEl i st Col | ect abl es& Get DASLi st (EcTVoi d)
GetsmyDASIdList

FoEcTi me& Get Ti me(EcTVoi d)

GetsmyTime

EcTVoi d Set DASLi st (const RWSl i st Col | ect abl es&)
Sets myDASList

EcTvoi d SetTi ne(const FoECTi ne&)
SetsmyTime

Private Data

RWEl i st Col | ect abl e myDASI dLi st
Thelist of DASid's associated with the buffer being used to construct the new buffer for the new DAS processing request

FoEcTi me nyTi ne
The time of the 1st command in the buffer used to start the list for constraint checking.

Preprocessor Macros
_FmvsBuf f er Li st Request _h_

Types
cl ass FnmivsBuf f er Li st Request

Public Functions

EcTl nt Get Type(EcTVoi d)
Gets myLoadType

EcTVoi d Set Type(const EcTInt)
Sets myLoadType
Private Data

LoadType nylLoadType
Type of buffer list to be returned

enum LoadType
Enumeration of load types

3-160 305-CD-042-001

Enumerators

ATC
RTS

Preprocessor Macros
_FmvsBuf f er Request _h_

Types

cl ass FmVsBuf f er Request
Thisisarequest for a specific buffer.

Protected Functions

EcTl nt GetBufferld(EcTVoi d)
GetsmyRTSBuffer|D

EcTl nt Get Buf f er Type(EcTVoi d)
Gets myBufferType

RWCSt ri ng& Get Name(EcTVoi d)
Gest myL oadName

EcTVoi d Set Bufferld(const EcTInt)
Sets myRTSBufferld

EcTVoi d Set Buf f er Type(const EcTInt)
Sets myBufferType

EcTVoi d Set Nane(const RWCStri ng&)
Sets myL oadName

Private Data

enum mnyBuf f er Type

RWCSt ri ng& myLoadName
If the buffer type is ATC the load name is need to retrieve the buffer

EcTint nyRTSBufferld
If the buffer type is RTS the RTS buffer id is need to retrieve the buffer
Private Types

enum
The buffer type being requested

3-161

305-CD-042-001

Enumerators

ATC
RTS

Preprocessor Macros
_FmveDel et eATCBuf fers_h_

Types

cl ass FnivsDel et eATCBuf fers
This class represents arequest to delete buffers It is only used when alate change is processed.

Protected Functions

RWEIl i st Col | ect abl e& Cet Li st (EcTVoi d)
Gets myL oadNames

EcTVoi d SetLi st (const RWSlistCol | ectabl es&)
Sets myL oadNames

Private Data

RWEl i st Col | ect abl e myLoadNanes
The load names that are associated with the buffers, itsis uses as a buffer id

Preprocessor Macros
_FmVsCGener at eMap_h_

Types

cl ass FnivsGener at eMap

This class represents the interface proxy class between FUI and the CM'S FmSmSpacecraft class. FmSmSpacecraft manages
the modelling for the ATC buffer, the RTS buffer, the table buffers and the ground imaging.

Public Functions

EcTl nt CreateConnection(void)
Establishes a connection with FmSmSpacecraft to receive the Generate map report request.

EcTVoi d DestroyConnecti on(voi d)
Destroyes the connections with FmSmSpacecraft

EcTVoi d Gener at eConpar eReport (EcTVoi d)
FUI invokes this function to generate a Compare report

FoMsCMBSt at us& Cener at el mageReport (const FoMsl mageRpt Req&)
FUI invokes this function to generate an Image report

FoMsCMBSt at us& CGener at eMapReport (const FoMsGenMapRequest &)
FUI invokes this function to generate an ATC or RTS map report

RWEl i st Col | ect abl es& Get ATCBuf f er s(EcTVoi d)
FUI invokes this function to retrieve al the ATC buffers

RWSI i st Col | ect abl es& Get RTSBuf f er s(EcTVoi d)
FUI invokes this function to retrieve al the RTS buffers

3-162 305-CD-042-001

FoLi LoadCont ent s& | nport Tabl eDunpt (const FoMsTabl eDat aReq&)
ImportTableDump is called to retrieve the table dump and convert it into a table load contents file for editing
f oMsCVBSt at us& Overwrit eGroundl mage(const FoMsl mageOver Wit e&)
ground image be overwritten with the specified portion of the input image
FoMsCMVBSt at us& Recei ve(voi d)
Receives the results of the report generation
RWCol | ect abl e& Request Buf f er (const FmvsBuf f er Request &)

RetrieveATCBuffer and RetrieveRTSBuffer call this function to request the FmSmSpacecraft model to return the appro-
priate buffer

RWEl i st Col | ect abl es& Request Buf f er Li st (const FmvsBuf f er Li st Request &)

GetATCBUuffers and GetRTSBuffers call this function to request the appropriate list of buffers from FmSmSpacecraft
model

FrSmATCBuUf f er Mbdel & Retri eveATCBuUf f er (const RWCStri ng&)
FUI invokes this function to request a specific ATC buffer

FnSnRTSBuf f er & Ret ri eveRTSBuf f er (const EcTI nt &)
FUI invokes this function to request specific RTS buffer

FoMsCMBSt at us& Send(const RWCol | ect abl e&)
Sends the report request to FmSmSpacecraft

Preprocessor Macros

_FmvsLoadData_h_

Types

cl ass FniMsLoadDat a

Thisclassis sent to CM S Schedule controller. Fromthisclassthe ATC load directives are used to create the ATC binary uplink
load. If the DAS needs to be partitioned multiple FmMsL oadData objects are returned to CM S Schedule Controller.

Protected Functions
EcTl nt Get Addr (EcTVoi d)
Returns the address of the next command in the directive list that is being processed
FmivhDi recti velLi st & Get Directi velLi st (EcTVoi d)
Returns the directive to be used to create the ATC load
RWCSt ri ng& Get LoadName(EcTVoi d)
Returns the Load name for the ATC load
FmvhDi recti veLi st & Get Upl i nkW ndow(EcTVoi d)
Returns the uplink window for the ATC load directive list
EcTVoi d Set Addr (const EcTI nt)
Sets the address to the next directive in the directive list that is being processed
EcTVoi d SetDirectivelList(const FmvhDirectiveli st &)
Sets myDirectivelist to the list used for creating the ATC load

EcTVoi d Set LoadNane(const RWCStri ng&)
Sets the load name

3-163 305-CD-042-001

EcTVoi d Set Upl i nkW ndow(const FOSTi el nt erval &)
Sets the uplink window

Private Data

EcTInt nyDirLi st Addr

Thisisthe next directive in the processing list. If thelist is completely processed theis set to NULL. If thelist requires
further processing, that isthe DAS/ ATC load need to be partitioned, it is set to the next directiveinthelist. Thisiswhere
the partitioned load needs to begin.

FmvhDi rectiveLi st nyDirectiveli st

Thisisthe portion of the DAS/ATC directive list being currently processed that will be used to create the ATC binary
uplink load It may be all of the DAS or part of the DAS if the ATC buffer cannot hold al of the commands - that is the
DAS s being partitioned

RWCSt ri ng nyLoadNane
Thisisthe load name create by ATC buffer model

FOSTi nel nt erval nyUpl i nkW ndow
Thisisthe uplink window for the ATC uplink directive list

Preprocessor Macros
_FmvsUpdat eBuf fer _h_

Types

cl ass FnivsUpdat eBuf f er

This class represents a message from the CM S load catal og to update the ATC/RTS buffers. It is sent from the load catalog
when an uplink verification is received from the Command Subsystem It is also used to update the ground image.

Public Functions
RWCSt ri ng& Get Nane(EcTVoi d)
Returns the load name that is associated with the ATC load buffer
EcTl nt Get Type(EcTVoi d)
Returns the type of buffer to be updated, ATC or RTS
EcTVoi d Set Nane(const RWCStri ng&)
Sets myL.oadName

EcTVoi d Set Type(const EcTInt)
Sets the type of buffer to be updated, myType

Private Data

EcTint nyBufferlD
Represent the buffer number that needs to be updated, pertains to RTS buffer number

EcTl nt nyEndLocati on
Represent the End location in the buffer

RWCSt ri ng nyLoadNane
Represents the load that was uplinked

EcTlint nyStartlLocation
Represents the start location in the buffer

3-164 305-CD-042-001

RWCSt ri ng nmyTabl eNane
Represents the the table name for the buffer update

EcTl nt nyType
represents the type of buffer affected by the uplink

Preprocessor Macros
_FnSmATCBuUf f er Model _h_

Types

cl ass FnBMATCBuf f er Model

Represent a buffer model of the ATC buffer. There are multiple buffer models. The buffer models are used to determine the
starting directive to be used for constraint checking. For thispurposeaprevious' buffer modelsare kept. This previous buffer
model will be used to constraint check late changes. Once all the commands in the buffer model are executed, the buffer is
archived and removed from the active list of ATC buffer models.

Thereisone"actual" buffer model. Thisrepresentswhat is currently loaded to the spacecraft. When an FmMsUpdateBuffer
isreceived by FmSmSpacecraft the "actual" buffer model is moved to the "previous' buffer model.

Finally, there are multiple "predicted” buffer models. These are used for constraint checking also. Because CM S performs
most of itsfunctionality in advance we are predicting what we expect the actual buffer model to be and using the "most recent
predicted buffer model" for constraint checking and determining what the new buffer model will be. When an FmMsUpdate-
Buffer isreceived by FmSmSpacecraft the "predicted” buffer model with the specified load name is moved to the "actual" buff-
er model.

Public Functions

EcTVoi d AddSaf eCommands(const FmvhDi recti veli st &)
Adds the safe commands to the end of the buffer and load directive list

FmvsLoadDat a& Assi gnConmandLocat i ons(const FmvhDi recti veli st &)
Assignsthe directives to a buffer location

EcTl nt Buil dBuffer(const FOSTi nelnterval & FnivhDirectivelisté&, EcTInt&,
FrmvsLoadDat a&)

Buildsthe buffer thisisthe controlling function used to determine the valid uplink window, available locationsin the buff-
er, keeps activities together and determines the commands for the load

EcTl nt & Det er mi neAct For Buf fer(const EcTInt, const FmvhDirectivelist&)

This routine ensures that activities are not split for the load that is being built. When it is determined that no more "full”
activitieswill fit in the buffer the load is marked for partitioning

EcTVoi d Det er mi neLoad(FmvsLoadDat a&)
Determines all of the commands for the ATC load

EcTVoi d Determi nePartitionUplinkW ndow const FoEcSpaceDirective& Fmvs-
LoadDat a&)

determines uplink window for partition

EcTVoi d Det er mi neUpl i nkW ndow(const FOSTi nel nterval & const FoEcSpaceDi -
rective& FmvsLoadDat a&)

validates the requested uplink window

EcTVoi d Gener at eMapReport (EcTVoi d)
Generate amap report for ATC buffer

EcTlnt LocationsAvail abl e(const FoEcSpaceDirective&)
Determines the number of available buffer locations in the buffer

3-165 305-CD-042-001

EcTint Partition(FmvhDirectivelList& EcTInt& FmvsLoadDat a&)

Buildsthe buffer for apartition, thisisthe controlling function used to determine the valid uplink window for the partition,
available locations in the buffer, keeps activities together and determines the commands for the load

EcTVoi d Updat eModel ()
Updates model from working to predicted or predicted to actual or from actual to previous
Private Data

RWEl i st Col | ect abl e myDASI dLi st
List of DAS Id associated with the buffer

EcTl nt nmyEndLoc
The location of the last executable command in the buffer

RWCSt ri ng nyLoadNane
The Load name that identifies the buffer

EcTl nt nmyNunber of Saf eCnds
the number of safecommands for this buffer

RWSl i st Col | ect abl e nySaf eConmands
The list of safe commands that will be added to the end of the buffer

EcTlnt nyStartLoc
The location of the first executable command for the load/buffer

RWIi e nyTi me
The time for determining the most recent buffer, it is set to the time of the DAS the buffer is being created for;

EcTl nt nyType
Indicates if the buffer isthe actual buffer, a predicted buffer, a previous buffer, or aworking buffer

FOSTi nel nt erval nyUpl i nkW ndow
the uplink window for the load associated with this buffer
Preprocessor Macros
_FnSmATCl mage_h_

Types
cl ass FnSMATCl nage
ATC Dump Image
Preprocessor Macros
_FnSnConpar eReport _h_

Types
cl ass FnSnConpar eReport

Generates areport on the compare of two dump files

Private Data

RW&t ri ng nmyReport Name
Name of the report to be generated

3-166 305-CD-042-001

Include Files
FmSmG oundl nage. h

Preprocessor Macros
_FSmDunpl mage_h_

Types

cl ass FnSnDunpl mage
Dump Image Class

Base Classes
publi ¢ FnBna oundl mage

Public Functions

EcTVoi d Conpar eDunpW t hDef aul t s(RWSt ri ng)
Compares the value of atable dump with the default values stored in DMS

FoLi LoadCont ents Convert Dunpt oCont ent s(FoMsTabl eDat aReq)
Converts adump file to an ASCII load contentsfile

EcTVoi d Gener at eReport (FoMsl mageRpt Req)
Generates areport on agiven dump file
Preprocessor Macros
_FnSmDunpReport _h_

Types
cl ass FnSnmDunpReport

Public Functions

RWSt ri ng Get Report Nane(voi d)
EcTVoi d Set Report Name(RW5t ri ng)

Private Data

RWSt ri ng myReport Nane

Preprocessor Macros
_FnSnFSW nage_h_

Types

cl ass FnBnFSW mage
Flight Software image class

3-167

305-CD-042-001

Preprocessor Macros
_FnSnGr oundl mage_h_

Types
cl ass FnSnG oundl mage

Public Functions

EcTVoi d Gener at el nageReport (RWat ri ng, EcTlnt)
Generates areport from an dump image

Include Files
FmSmG oundl nage. h

Preprocessor Macros
_FmBm nage_h_

Types
cl ass FnSnl nage

Base Classes
publi ¢ FnBna oundl mage

Public Functions

EcTVoi d Gener at eReport (Fnivsl mageRpt Req)
Generates aimage report based on an input request

Preprocessor Macros
_FnSmivapBuffer _h_

Types
cl ass FnSnivapBuUf f er

Thisclassrepresentstheinterface proxy class between CM Sinternal subsystems and the FmSmSpacecraftM odel class. FmSm-
SpacecraftM odel manages the buffer modelling for ATC, RTS and table buffers and the ground imaging.

Public Functions
EcTl nt Creat eConnecti on(EcTVoi d)
Establishes a connection with FmSmSpacecraft to receive requests from the schedule controller and the load catalog

EcTVoi d Del et eBuf f ers(const RWHl i st Col | ect abl es&)

Request received from load catalog when a late change as been successfully processed. The predicted buffer models as-
sociated with all of the generated loads are deleted. Instantiates an FmMsDeleteATCBuffers object.

EcTVoi d Destroy(EcTVoi d)
Destroys the connection with FmCcCommandModel
FmVBATCBuUf f er I nf o Get ATCBuUf St art Ti ne(const FoECTi ne&)

Requeststhe start time of the 1st command in the buffer that will be used to model the newly recieved DAS or late change
request

3-168 305-CD-042-001

RWSl i st Col | ect abl es& MapATC(const FmivhDi recti veli st &, const FOSTi nel nter -
val & const FoOEcTi ne&, const EcTInt &)

Request FmSmSpacecraft to map the command list into an ATC buffer model. Instantiates an FmMMsATCM apRequest
object to be sent to FmSmSpacecraft.

RWEl i st Col | ect abl es& MapLat eChange(const FnivhDirectivelLi st& const FOS-
Ti el nterval & const FoEcTi ne& const EcTI nt &)

Requests FmSmSpacecraft to map the late change command list into the correct buffer model. Instantiatesan FMMSATC-
MapRequest object to be sent to FmSmSpacecraft.

RWEl i st Col | ect abl es& Recei ve(EcTVoi d)

Receives the response from FmSmSpacecraftModel 1t receives either A list of FmMsLoadData objects or a
FmMsATCBUufferInfo object

EcTVoi d Send(const RWCol | ect abl e&)

Sends messages to FmSmSpacecraftModel. Sends FMMsATCM apRequest, FmMsDeleteATCBuffers, or FmMsUpdate-
Buffer.

EcTVoi d Updat eBuf f er (const FmvsUpdat eBuf f er &)
Request the buffer be updated to anew status

Preprocessor Macros
_FnSnM cr oLoadl nage_h_

Types
cl ass FnmM cr oLoadl mage

Microprocessor load image class

Preprocessor Macros
_FnBSnRTSBuffer _h_

Types
cl ass FnBnRTSBuf f er

This class represents asingle RTS buffer. It models the contents of the buffer: the contents of each location are maintained.
A RTS map report may be generated from this class and authorization to access this classis verified using CSS software.
Public Functions
EcTVoi d Gener at eMapReport (EcTVoi d)
Generate the RTS map report upon request from FUI
EcTVoi d Updat eBuf f er (const FmvsUpdat eBuf f er &)

Updatesthe RTS buffer when an FmM sUpdateBuffer messageisreceived from CMS Load Catalog. The messageis sent
in response to the receipt of an uplink verification from R/T Command

EcTVoi d Veri fyAut horizati on(EcTVoi d)
Verifies authorization to the RTS buffer
Private Data

EcTlint nyBufferld
Identifies the buffer being accessed

EcTint nyCritical Fl ag
Idicates that the load contained critical commands, therefore making the buffer critical

3-169 305-CD-042-001

RWCSt ri ng myCurrent Load
Indicates the load file name that was uplinked to this buffer

EcTint nylnhibitld
Indicates the id used to inhibit the commands in the buffer

Preprocessor Macros
_FnBnRTSBuUf f er Model _h_

Types

cl ass FnBnRTSBuf f er Model

This class represents the managing class of al the RTS buffers It will retrieve arequested buffer, update the specified buffer,
and request the buffer to generate its map report.

Public Functions

EcTVoi d Gener at eMapReport (const FoMsGenMapRequest &)
Requests the RTS buffer specified in the request to generate its map report

FrSnRTSBuf f er & Retri eveBuf fer(const Ectlnt)
Retrieves the requested buffer number

EcTVoi d Updat eModel (const FmivsUpdat eBuf f er &)
Updates the specified buffer model
Private Data

EcTl nt myNunber O Buf fers
indicates the number of buffers being modelled

Preprocessor Macros
_FnBnRTSI nage_h_

Types
cl ass FnSnRTSI mage

Preprocessor Macros
_FnBntpacecr af t Model _h_

Types
cl ass FntnSpacecr af t Mbdel

Thisisthe controlling class for the spacecraft modelling. FmSmSpacecraftModel handles all of the interprocess communica-
tion between CM S Schedule controller, CMS Load Catalog, and FUI. It asks the models, ATC, RTS, and table to determine
the mapping of the commands into the buffer locations.

The ATC buffer model determines the appropriate uplink window and if the load needs to be partitioned
Public Functions

EcTVoi d Archi veATCBuf f er (const RWCStri ng, const EcTlnt)

buffer image onceall thecommandsin the buffer have been executed it isstored with DM S, RTSs and Tablesare archived
when the actual buffer is being updated to a new buffer.

3-170 305-CD-042-001

FrSm mage Convert Dunpt oBi naryl mage(RWBt ri ng)
Converts adump file into abinary image file by stripping out the EDU header and packet header information
RWEl i st Col | ect abl e& Creat eATCBuf f er (const FmVBEATCVapRequest &)

Creates anew ATC working buffer, the working buffer will be moved into the predicted buffer list after the ATC load is
generated

EcTVoi d Del et eATCBuUf f ers(const FmvsDel et eATCBuUf f er s&)
FSmATCBuUf f er Mbdel & Get Recent Buf f er (const FoEcTi ne&)

Deletes ATC buffers from the list
EcTVoi d Handl eMessage(const RWCol | ect abl e&)
Handles al 1PC messaging
EcTVoid Initialize(EcTVoid)
Initializes the spacecraft modelling process
FoMsCVBSt at us& ProcessConpar eRequest (const FmvsConpar eRequest &)
Processes a Compare reguest
FoMsCMBSt at us& Processl mageReport (const FoMsl mageRpt Req&)
Processes a request to produce an image report
EcTVoi d ProcessMapReq(EcTVoi d)
Prcesses a generate map request
EcTVoi d ProcessMenor yDunp(EcTVoi d)
Processes a memory dump request
FrSmATCBuUf f er Model & Retri eveATCBuUf f er (const RWCSti ng&)
Retrieves the requested ATC buffer
RWCol | ect abl e& Retri eveBuffer(const FniVsBuf f er Request &)
Retrieves requested buffer - either ATC or RTS
RWEl i st Col | ect abl es& RetrieveBuf ferlList(const FmVsBuf ferlLi st Request &)
Retrieves alist of buffers- RTSor ATC
EcTVoi d SendEvent Message(const RWCStri ng&)
Sends an event message to DM S for broadcasting
EcTVoi d Updat eATCModel (const RWCStri ng&)
Updates the ATC model - moves the working ATC model into a predicted model or a predicted model to the actual
EcTVoi d Updat eBuf f er (const FmvsUpdat eBuf f er &)
Updates appropriate buffer model
EcTVoi d Updat eRTSModel (const FmvsUpdat eBuf f er &)
Updates the appropriate RTS buffer

EcTVoi d Updat eTabl eModel (const FnivsUpdat eBuf f er &)
Updates the Table model

3-171 305-CD-042-001

Preprocessor Macros
_FmBnTabl e_h_

Types

cl ass FnBnilabl e
Represent a single table on the spacecraft, it will update the ground representation of the spacecraft tables.

Public Functions

EcTVoi d Gener at eMapReport (EcTVoi d)
Generates the table map report

EcTVoi d Updat eTabl e(const FmvsUpdat eBuf f er &)

Updatesthe ground referencetable when an FmMsUpdatebuffer messageisreceived from CMS Load Catalog. The mes-
sageis sent in response to the receipt of an uplink verification from R/T Command

Private Data

RWCSt ri ng nyCurrentLoad
indicates the load that was uplinked and used to update the buffer

EcTl nt nmyEndi ngLocati on
the Ending location of the buffer

RWCSt ri ng myOwner
the owner of the table

EcTint nySi ze
the size of the table

EcTint nyStartlLocation
the starting location of the table

FoLi Tabl eFor mat nyTabl eFor mat
The table format for thistable
Preprocessor Macros
_FnBnirabl el mage_h_

Types

cl ass FnBnirabl el nage
Table Image Class

Private Data

RWCSt ri ng myNarme
Name of thistableimage

3-172 305-CD-042-001

Preprocessor Macros
_FmBnTabl evbdel _h_

Types

cl ass FnBnrlabl eVodel

This class represents themanaging class of al the table buffers It will retrieve arequested table, update the specified table with
the uplink load, and request the table to generate its map report

Public Functions

EcTVoi d Gener at eMap(const FoMsGenMapRequeset &)
Requests the Table specified in the request to genereate ist map report

FrSnirabl e& Retri eveTabl e(const RWCStri n&)
Retrieves the requested table

EcTVoi d Updat eModel (const FmvsUpdat eBuf f er &)
Updates the specified table model

System Include Files
rw col l ect.h

Preprocessor Macros
_FoFnDat aFi el d _h_

Types

cl ass FoFnDat aFi el d
This class represents the data field of atable

Base Classes
public RWCol | ect abl e

Public Functions

RVBi t Vec ProduceBi nary()
Produces the binary form of thisfield.

Private Data
RWCString nyDataUnits
The units of thefield value.
RWCSt ri ng myFi el dDescri pt or
Textual information describing the field and its value.
EcTl nt nyFi el dNunber
A unique value which identifies the field within the table.
EcTl nt myRangeCheckFl ag
An indicator of whether range checking is to be performed.

EcTI nt nyScal eFact or
The scale factor to be applied to the word value within this field.

3-173 305-CD-042-001

EcTl nt nyTabl eNunber
A unique value specifying amemory table.

EcTlint nyVal ueBit Si ze
The size of the value in bits.
EcTI nt nyVal ueOverri deFl ag

An indicator of whether the value may br overwritten with a new value during table generation.

RWCSt ri ng nyVal ueType
The data type of the value in thisfield.

Preprocessor Macros
_FoMsCMVSSt at us_h

Types
cl ass FoMsCMSSt at us

Thisclassisused to return processing statusto CM S's external interfaces. It returns status for constraint checking and for load
generation.

Private Data

EcTint nyld

or the Instruction request id that the statusisin response to
RWCStri ng nyStat us

The statusiis either:

conplete - everything processed w thout error
pending - the constraint check was conplete with
soft constraints only
failed - constraint violations found were hard constraints
| oad generation failed

Preprocessor Macros
_FoMsConpar eMask_h_

Types
cl ass FoMsConpar eMask

This class represents a user specified mask for the compare report. The compare can be requested for aground image and a
dump image or aload image or any combination of image comparisons. The mask specifies a particular portion of the image
not to compare.

Private Data

EcTl nt nyEndAddr ess
the ending address of the mask

EcTl nt nyStart Address
the starting address of the mask

3-174 305-CD-042-001

Preprocessor Macros
_FoMsConpar eReq_h_

Types

enum Fi | eType
Enumeration of file types to be compared.

Enumerators

ATC
Absolute Time Command Buffer

FSW
Flight Software Buffer

MP

MicroProcessor Buffer
RTS

Relative Time Command Buffer
TAB

Table Buffer

cl ass FoMsConpar eReq

Private Data
EcTl nt nyEndAddr ess
Thisisthe ending address for the comparison
RWCStri ng nyl nageFil el
thisis the first image file for use in the comparison

RWCSt ri ng nyl mageFi | e2
thisisthe second image file for use in the comparison

EcTlnt nyStart Address
Thisisthe starting address for the comparison

Fil eType nyType
the types of filesto be compared
Preprocessor Macros
_FoMsConflictinfo_h_

Types
class FoMsConflictlnfo

This class gives the identifying information on constraint violations. It specifies theid, the command mnemonic, the conflict-

ing command, the time the constraint violation occurred, whether the violation is hard or soft and a textual description of the
violaion

3-175 305-CD-042-001

Private Data

RWCSt ri ng nyCndMhenoni ¢
the directive command mnemonic being constraint checked

RWCStri ng nyConflicti ngCnd
the command that violates the constraint rule

RWIi me nyConstraintTi ne
the time of the constraint
EcTint nyld
the ID represent different things for different constraint checking requests:

the activity id of a conmand in a schedul e

the l'ine nunber of a command in a procedure
the buffer l[ocation of a conmand in an RTS | oad
contents file

the PDB activity definition id

EcTI nt nySoft Har dFl ag
Indicates if the violatin is hard or soft

RWCString nyViolationlnfo
Textual description of the violation for messaging

Include Files

FoUi I nstruction. h

Preprocessor Macros
_FoMsGenMapRequest _h_

Types

cl ass FoMsGenMapRequest
Thisclassis arequest for a buffer map report

Base Classes

public FoUilnstruction

Private Data

EcTInt nyBufferlD
The RTS buffer number used for the map report

EcTl nt nyEndLocati on
the ending buffer locatin for the report

RWCSt ri ng nyLoadNane
the load name used to identify the atc buffer model

enum nyMapType

EcTlint nyStartLocation
the starting location in the buffer for the report

3-176

305-CD-042-001

Private Types

enum
The type of buffer for which to generate the map report

Enumerators

ATC
RTS

Preprocessor Macros
FoMsl mageOverWite h

Types
cl ass FoMsl mageOverWite

This class represents a request to overwrite a ground with another (dump) image or a portion of that image.

Private Data
RWCSt ri ng nyDunpNane

thisis the name of the dump image to be used to overwrite the ground image

EcTlnt nyStart Addres
Thisisthe starting address for the overwrite

EcTl nt nySt opAddress
Thisisthe stop address for the overwrite

Preprocessor Macros
_FoMsl mageRpt Req_h_

Types
cl ass FoMsl mageRpt Req

This class represents a request to output an image report

Private Data
RWCString nyDirectory
thisisthe directory where the report is output
RWCSt ri ng nyl nageNane
Thisistheimage file to produce the report from
RWCSt ri ng nyReport Nane
Thisisthereport file

3-177

305-CD-042-001

Include Files
FoMsCMSSt at us. h

Preprocessor Macros
_FoMsSt at usConpl ete_h_

Types
cl ass FoMsSt at usConpl et e

Represents a good status from constraint checking or load generation

Base Classes
publ i c FoMsCMSSt at us

Include Files
FoMsCMBSt at us. h

Preprocessor Macros
_FoMsStatusFailed h

Types

cl ass FoMsSt at usFai | ed
Represents afailed status from constraint checking of load generation

Base Classes
publ i c FoMsCMSSt at us

Include Files
FoMsCMSSt at us. h

Preprocessor Macros
_FoMs St at usPendi ng_h_

Types

cl ass FoMsSt at usPendi ng

Represents a pending status from constraint checking This means that the constraint violations found are all soft constraints.
If CMSisprocessing aDAS, we wait to continue processing of the load until aresponseis received from planning and sched-
uling. If CMSis processing an RTS load we wait for a response from FUI to continue processing the RTS load.

3-178 305-CD-042-001

Base Classes
publ i c FoMsCMSSt at us

Include Files
FoUi I nstruction. h

Preprocessor Macros
_FoMsTabl eDat aReq_h_

Types
cl ass FoMsTabl eDat aReq

This class represents a request from the FUI's table |oad builder to import a table dump and convert it to atable load contents
for editing & producing atable load

Base Classes

public FoUilnstruction

Private Data

String nyDirectory
Thisisthe directory for the output report file

String nmyDunp
Represents the dump file to be used for the conversion to atable load contentsfile
Preprocessor Macros
_FoRpMapReport _h_

Types
cl ass FoRpMapReport

A description of the class

Preprocessor Macros
_FoSnBuf fer Location_h_

Types

cl ass FoSnBufferLocation
This class represnt the buffer location of acommand in either the RTS or ATC buffers

Protected Functions
FoEcSpaceDirective& CetDirective(EcTVoi d)
Gets mySpaceDirective
EcTl nt GetLocati on(EcTVoi d)
Gets myL ocation

EcTVoid SetDirective(const FoEcDirective&)
sets mySpaceDirective

3-179 305-CD-042-001

EcTVoi d Set Locati on(ECTI nt)
Sets myL ocation
Private Data

EcTlnt nyLocation
the buffer location (0-2999)

FoEcSpaceDirecti ve mySpaceDirective
The directive in myLocation

3-180 305-CD-042-001

3.6 Load Catalog

The Load Catalog is a persistent process that runs on the FOS Data Server. It is responsible for
generating loads and for maintaining acatalog of all valid loadsthat are available for uplink by the
FOS.

Load Catalog generates |oads from load contents files. Depending on the load type, Load Catalog
performs whatever conversion is needed to format the load as 1553B commands, computes the
CRC for the load, and builds and appends the load initiate command. The 1553B commands are
packetized according to CCSDS protocol.

Microprocessor and flight software load contents files are received by the FOS as binary files and
the generation of these types of loads only requires the conversion of the binary data to 1553B
commands.

RTS load contents files are passed to Load Catalog from FUI. Load Catalog is responsible for
requesting a constraint check on the command sequence by Command Model and for converting
each command and its time tag to binary format. The commands are then converted to 1553B
commands.

Tableload contentsfilesare passed to Load Catal og from FUI for user-generated tables, from DM S
for FDF tables, and from FAS for the spacecraft clock correlation table. Load Catalog converts
each field of the table from ASCII to binary using the table definition in the FOS database. The
table datais then converted to 1553B commands.

ATC loads are created by the CM S based on an activity list received from PAS. After the command
list generated from the activity list has been constraint checked and partitioned, the command list
for an ATC load is passed to Load Catalog by the Schedule Controller process. Load Catalog
converts each command in the list to its binary format, and convertsit to a 1553B command.

For each load available for uplink by the FOS, L oad Catalog maintainsfour files: the load contents
from which the load was generated, the load in uplink format, the load generation report, and the
load image that may be compared against a memory dump image. Load Catalog also maintains
identifying information about the load as catal og entriesin the FOS database. Whenever anew load
is generated, Load Catalog stores the four files for that load with DMS and requests that DM S
create a new catalog entry for the load. When a load is deleted by user request, Load Catalog
removes the four filesfor that load with DM S and requests that DM S remove the catal og entry for
the load. Load Catalog is also responsible for updating fields in the catalog entry when aload is
scheduled for uplink or uplinked successfully.

3.6.1 Load Catalog Context
Figure 3.6-1 shows the context diagram for Load Catalog. Load Catal og has seven interfaces.
FOS Analysis:

e Load Catalog receives arequest to generate a Table Load from aload contentsfile.

3-181 305-CD-042-001

281-¢

T00-¢70-AdD-50€

FOS User
Interface

Load Generation
Status

Load Generation
Request,
Soft Constraint

Override

CMS:
Updates
Spacecraft <<—p, Y
Model elete Request
Table Load
Generation Request
Load
Generation
/ Status
FOS
Analysis

FOS
Planning and
Scheduling

I\

Load
Scheduled _Load CMS:

Notification _Deletion Schedule
Notification Controller

Delete Load Requests;
Store Load Requests,
Catalog Queries

lhis System

Integer
Status

CMS
Load Catalog

Load Contents,
Table Formats,
Catalog Entries,
Notification Event

RTS

Constraint _ Load
Info Contents

Uplink Loads, Load Reports,
Load Contents, Load Images,
Catalog Entries, Events

™ FOS Data
V Management
CMS:
Command
Model

Figure 3.6-1. Load Catalog Context Diagram

« Load Catalog sends an integer status to indicate if the load was successfully generated or
not.

CMS Spacecraft Model:

« Load Catalog sends requests to update buffer models whenever a load has been
successfully uplinked.

« Load Catalog sends del ete requests whenever loads are deleted from the FOS load catal og.
FOS User Interface:

e Load Catalog receives requests to generate loads from load contentsfiles.

» Load Catalog receives constraint override status in response to soft constraints.

e Load Catalog sends a CM S status to indicate conflict information which was discovered in
the constraint checking process.

« Load Catalog sends a CMS status to convey the success or failure of complete load
generation.

FOS Planning and Scheduling:

« Load Catalog receives a request to update the count of scheduled uplinks for a particualr
load.

« Load Catalog sends notification that aload has been deleted from the FOS load catal og.
CMS Schedule Controller:
e Load Catalog receives arequest to delete aload or loads from the FOS load catal og.

« Load Catalog receives a request to store an ATC Load and create a catalog entry for that
load.

« Load Catalog receives a query into the catalog to discover if a specified load has been
uplinked or not.

« Load Catalog sends a status to indicate the success or failure of the above requests.
FOS Data Management:
« Load Catalog retrieves load contents files, which are used to generate loads.

« Load Catalog retrievestable formats, which are used to correctly format table datafor table
load generation.

e Load Catalog updates entries in the FOS load catal og.

« Load Catalog receives notification event messages that indicate tthe time at which a
specified load has been successfully uplinked to the spacecraft.

« Load Catalog receives notification event messages whenever atable load contents file has
been imported into DM S from the FDF.

« Load Catalog sends uplink loads, load reports, load images, and load contents files to be
stored whenever such files are generated during the load generation process.

e Load Catalog sends a request to add an entry to the FOS load catal og.
e Load Catalog sends event messages.

3-183 305-CD-042-001

CMS Command Model:
« Load Catalog sends RTS load contents files to be constraint checked.
« Load Catalog receives conflict information concerning constraint violations that were

detected by the Rule-Based Constraint Checker.

3.6.2 Load Catalog Interfaces
Table 3.6.2. Load Catalog Interfaces (1 of 2)
Interface Interface Interface Class Service Service Frequency
Service Class Description Provider User
Generate Load FmMsGenerateLo | Proxy between CMS: Load CMS: Load FUI: Load 1/day
ad Catalog and FUI. Catalog Manager,
Table
Load Builder,
or RTS Load
Builder
FoMsLoadGenRe | Request to generate
q specified load.
FoMsCMSStatus Status of load generation.
Override RTS FmMsGenerateLo | Proxy between CMS: Load CMS: Load FUI: RTS Load | 1/day
Constraints ad Catalog and FUI requesting | Catalog Builder
that RTS constraint
violations be ignored.
FoMsCMSStatus Status of constraint check.
Update Load FmMsCatalogUpd | Proxy between CMS: Load CMS:Load PAS: Load 1/day
Scheduled Count | ate Catalog and PAS to update Catalog Scheduler
status of load to scheduled.
Load Deletion FpRmLoadActDel | Proxy between CMS: Load CMS: Load PAS: Load
Catalog and PAS to request | Catalog Scheduler
deletion of a load.
Process Load FmMsInform Proxy between CMS: Load CMS:Load DMS: Event 5/day
Uplink Catalog and DMS to request | Catalog Handler
Notification CMS act upon a load uplink
event message.
Check for ATC FmMsStoreATCL | Proxy between CMS: Load CMS:Load CMS: 1/week
Load oad Catalog and CMS: Schedule | Catalog Schedule
Controller to check for the Controller
existence of a load.
ATC Load FmMsStoreATCL | Proxy between CMS: Load CMS: Load CMS: 1/week
Deletion Request | oad Catalog and CMS: Schedule | Catalog Schedule
Comtroller to request Controller
deletion of a scheduled load.
Store ATC Load FmMsStoreATCL | Proxy between CMS: Load CMS: Load CMS: 5/day
oad Catalog and CMS: Schedule | Catalog Schedule
Controller to request storage Controller
of an ATC load.

3-184

305-CD-042-001

Table 3.6.2. Load Catalog Interfaces (2 of 2)

Interface Interface Interface Class Service Service Frequency
Service Class Description Provider User
Delete Buffer FmSmMapBuffer Proxy between CMS: Load CMS: CMS: Load 10/week
Models Catalog and CMS: Spacecraft Catalog
Spacecraft Model . Model
FmMsDeleteATC Request to delete buffers.
Buffers
Update Buffer FmSmMapBuffer Proxy between CMS: Load CMS: CMS: Load 10/week
Models Catalog and CMS: Spacecraft Catalog
Spacecraft Model. Model
FmMsUpdateBuff | Update Buffer from working
er to predicted and then to
actual.
Validate RTS FmMsValidateCo Proxy between CMS: Load CMS: CMS: Load 1/day
nstraints Catalog and CMS: Command Catalog
COmmand Model to request | Model
an RTS load contents be
constraint checked.
FoMsCMSStatus Status of constraint check.
Generate Table FmMsGenTable Proxy between CMS: Load CMS: Load FAS: 1/week
Load Catalog and FAS. Catalog FaCcClockErr
or
FoMsGenlnfo Request to generate table
load from load contents file.
Store Load FoDsFileAccessor | Proxy between DMS and DMS CMS: Load 50/day
CMS: Load Catalog to store Catalog
files.
Store Catalog FdDbAccessor Proxy between DMS and DMS CMS: Load 5/day
Entry CMS: Load Catalog to store Catalog
catalog entries.
Retrieve Catalog | FdDbAccessor Proxy between DMS and DMS CMS: Load 5/day
Entry CMS: Load Catalog to Catalog
retrieve catalog entries.

3-185

305-CD-042-001

98T-¢

T00-¢70-AdD-50€

o PAS proxy with CMS

TMS proxXy with FUT

Figure 3.6-2. Load Catalog External Interfaces

FpRmLoadActDel
= CMS proxy with DMS + loadActDelRequest(const HString &, int)int
FmMslInform T
communicates E
CreateConnecthn():.EcTInt) i Wlllh CONTINUED :
DestroyConnection(): EcTVoid N FoLiLoad
InformCMS(const FoEvEvent&) EcTVoid FmLdLoadCatalog creates
Send(const RWCollectable&) EcTVoid myAuthorizationList CONTINUED
- myEventPtr: FoEvEvent*
- myProcessingStatus: FOMsCMSStatus E CMS proxy with ANA
sends to
Load Catalog + CheckForUplink(EcTInt): EcTInt
N . FmMsGenTabl
+ ConstraintCheck(const FOMsRTSLoadGenReq&)EcTVoid mMsGenTable
=] + CreateCatalogEntry(FoMsLoadGenReq*) EcTInt -
+ CreateCatalogEntry(const FOLIATCLoad&)EcTInt - CreateConnection(): EcTInt
FoEVEvent @ is received by + HandleMessage(): EcTVoid - DestroyConnection(): EcTVoid
+ MakeFSWIoad(const FoOMsFSWLoadGenReq&)EcTVoid + MakeTableLoad(const FoMsGenlInfo&) EcTint
+ MakeMicroload(const FoMsMPLoadGenReq&)EcTVoid - Receive() : EcTInt
+ MakeRTSload(const FOMsRTSLoadGenReq&)EcTVoid - Send(const FoMsGeninfo&} EcTint
+ MakeTableload(const FoMsTableLoadGenReq&)EcTVoid T
+ ProcessDeletions(const RWSlistCollectables&)EcTInt sends to
= + ProcessLoadGenRequest(const FoMsLoadGenReq&EcTVoid Load Catalog
FoMsCMSStatus + ProcessLoadUplinkStatus(const FOEVEvent&)EcTVoid E
+ ToFUl(const FOMsCMSStatus&) EcTInt FmMsGeninf
- myld : EcTInt is sent + UpdateCatalogEntry(const FoOEvEvent&) FmMsUpdateBuffer& miisteninto
- myStatus : RWCString ~to proxy by | + UpdateCatalogEntry(const RWCString&)EcTInt receives and - myDirectory : RWCString
processes - myFilename : RWCString
- myTableName: RWCString
receives from
proxy
is sent = CONTINUED sends update
by ; et
Y sends to FoMsLoadGenReq information to
Load Catalog This page shows the Load
Catalog and its external
{shared - FMN,FUI} interfaces. The internal
=] interfaces are shown on
another page.
FmMsGenerateLoad = CMS proxy with PAS
FmMsCatalogUpdate
+ ConstraintOverride(enum option{y, n}) FoMsCMSStatus&
+ CreateConnection(): EcTInt - CreateConnection(): EcTInt
+ DestroyConnection(): EcTVoid - DestroyConnection(): ECTVoid
+ GenerateLoad(const FoMsLoadGenReq&)FoMsCMSStatus& + LoadScheduled(const HString&) EcTVoid
- Receive() : FOMSCMSStatus& . - Send(const RWCString&) EcTInt
- Send(const RWCollectable&} EcTVoid

3.6.3 Load Catalog Object Model

The Load Catalog object model is shown in Figure 3.6-2. FmLdLoadCatalog maintains lists,
represented by FolLdCatalogEntry, of the various types of loads ready for uplink in the EOC.
FmLdLoadCatalog is responsible for generating loads, creating and updating catalog entries,
responding to queries about the load catalog, and generating reports.

The FmMsGeneratel oad classis an interface proxy classto FUI. FUI usesthis classto request that
a load be generated from a load contents file. FmLdLoadCatalog receives from this proxy a
FoMsL oadGenReq object. Thisobject containsinformation necessary to generate certain types of
loads. The Load Catalog uses the FOMsL oadGenReq, shown in Figure 3.6-3, to find the load
contents file and create the load. Also, some of the information in the FoM sLoadGenReq will be
copied into the FoLdCatalogEntry. FmLdL oadCatalog returns to the proxy a FOMsCM SStatus
object, which is used to convey the status of load generation.

The FmMsInform class is an interface proxy with DMS. DMS uses this class to notify
FmLdLoadCatalog that either a load has been successfully uplinked, or that an externally-
generated load contents file has been imported into DMS.

The FmMsGenTable class is an interface proxy to the Anaysis subsystem. It is used when
Analysis wants to request an FoLiTablelLoad be generated from a load contents file. The class
FoMsGenlnfo contains information about the table load contents file from which Analysis would
like atable load generated. FmLdLoadCatalog will use the data in FoMsGeninfo to generate the
FoLiTablelL oad.

The FmMsCatalogUpdate class is an interface proxy to the Planning and Scheduling subsystem.
Planning and Scheduling uses this class to inform CM S that aload has been scheduled for uplink.
FmLdL oadCatalog will update the FoL dCatalogEntry for that |oad appropriately.

The FpRmLoadActDel class is an interface proxy belonging to Planning and Scheduling that
FmLdL oadCatal og uses to inform Planning and Scheduling when aload has been deleted from the
FOS load catalog.

Figure 3.6-4 shows the different types of loads and their structures. Each of the load subclasses
(FoLiTableLoad, FoLiFlightLoad, FOLiRTSLoad, FoLiMicroLoad, and FOLiATCLoad) derived
from the FoLiL oad base classisresponsible for building itsload uplink module by packetizing the
load data and appending the load initiate command. Additionally, the ATC and RTS loads contain
commands which must be converted to binary to build the load uplink module, and certain fields
in table loads must be converted to spacecraft table format. Additionally, the FOLIRTSL oad class
validates commands in RTS loads using definitions in the Command Database.

The FoLiTableload class also uses the FoFmTableFormat class, which contains the template for
the table load. This class is retrieved from DMS, and it contains one to many FoFmDataField
objects.

Each FoLiL oad object is made up of four components. Figure 3.6-5 shows the components that
make up each type of load. FoLiUplinkL oad represents the uplinkable, spacecraft-ready form of
theload. FoLiL oadContents represents the raw contents of the load as they are received by CMS.
FoLiLoadlmage is the binary form of the load, before it has been put into spacecraft format.
FoLiLoadReport is the report that is automatically generated whenever a load is generated. It
contains pertinent information about the load and its location in spacecraft memory.

3-187 305-CD-042-001

881-¢

T00-¢70-AdD-50€

This page of the object shows
different types of load generation

requests that are received from FUI.

FoMsLoadGenReq

myDirectory : RWCString

myFunction : RWCString
myLoadName : RWCString

mySize : EcTInt

mySpacecraftld : RWCString
mySubsystemld : RWCString
myUserld : RWCString
myValidUplinkPeriod : FOSTimelnterval

{shared - |[FMN,FUI}

FoMsTableLoadGenReq

Ed

Ed

==

FoMsRTSLoadGenReq

myEndField : EcTInt
myStartField : EcTInt=0
myTableName : RWCString

F

oMsFSWLoadGenReq FoMsMPLoadGenReq

Figure 3.6-3. Load Generation Requests

- myCheckOnlyFlag : EcTInt
- myOffset : EcTInt
- myRTSBufferNumber : EcTInt

{shared - FMN,FUI}

681-€

T00-¢70-AdD-50€

FoLiFlightLoad

- myEndingLocation : EcTInt
- myLoadReport : FoLiLoadReport*

=
This page shows the different M
types of loads that exist and their FoLiMicroL.oad
structures. The aggregate parts of - - ;
‘each load are shown on a - myEndingLocation : !EcTInt
separate page. - myLoadReport : FoLiLoadReport*
- /myMemoryUpdateSize : EcTInt
- myStartingLocation : EcTInt
=
FmLdLoadCatalog + BuildUplinkLoad() : EcTInt
=
cont. FoLiLoad
- myDestination : RWCString
- myDirectory : RWCString
- myLoadContents : FolLiLoadContents
creates —@) myLoadName : RWCString
- myLoadSize :EcTInt
- myNumberOfPieces : EcTInt ﬂ
- myOwner : RWCString
- mySizeOfLastPiece : EcTInt
- mySpacecraftld : EcTInt
- myStatus : FOMsCMSStatus
- myUplinkLoads : RWSlistCollectables
- myUplinkPeriod : FOSTimelnterval
+ BuildUplinkLoad(const FoLiLoadlmage&) : EcTInt
+ CreatelLoad(const FoMsLoadGenReq&) : FoMsCMSStatus&
+ ComposeReport() : EcTInt
+ GenerateLoadlmage(const FoLiLoadContents&) : EcTInt
B
FoFmDataField
- myDataUnits : RWCString E
- myD.efauItVaIL.Je :<template>. FoFmTableFormat
- myFieldDescriptor : RWCString
- myFieldNumber : EcTInt - myDescriptor : RWCString
- myHighRangeValue : <template> - myMaxSize : EcTInt
- myLowRangeValue : <template> - myStartAdress : EcTInt
- myRangeCheckFlag : EcTInt - myTableMnemonic : RWCString
- myScaleFactor : EcTInt 1+ - myTableNumber : EcTInt
- myTableNumber : EcTint @ ——<_> - myTableType : RWCString
- myValueBitSize : EcTInt
- myValueOverrideFlag : EcTInt + ProduceBinary() : RWBItVec
- myValueType : RWCString
+ ProduceBinary() : RWBitVec

Figure 3.6-4. Load Types

- /myMemoryUpdateSize : EcTInt
- myStartingLocation : EcTInt

+ BuildUplinkLoad() : EcTInt

FoLIATCLoad

myCriticalCommands : FmMnDirectiveList
myCriticalFlag : EcTInt

myDASId : EcTInt

myDirectiveList : FmMnDirectiveList
myLoadReport : FoLIATCLoadReport*

BuildUplinkLoad() : EcTInt
ComposeReport() : EcTInt
CreateLoad(const FmMnDirectiveList&) : FoMsCMSStatus&

FoLiRTSLoad

- myCriticalCommands : FmMnDirectiveList = NULL
- myCriticalFlag : EcTint

- myDirectiveList : FmMnDirectiveList

- myLoadReport : FoLiRTSLoadReport*

- myRTSBuffDestination : EcTInt

+ BuildUplinkLoad(const FoMsLoadGenReq&) : EcTint
+ ComposeReport() : EcTInt
+ CreateLoad(const FoMsLoadGenReq&) : EcTInt

FoLiTableLoad

myEndLocation : EcTInt
myLoadReport : FoLiLoadReport
myStartLocation : EcTInt
myTableName : RWCString

+ o+ o+ o+

BuildUplinkLoad() : EcTint

ComposeReport() : EcTVoid

CreateLoad(const FoMsTableLoadGenReq&) : EcTInt
GenerateLoadlmage(const FoLiLoadContents&) : EcTInt
RetrieveTableFormat() : FoFmTableFormat&

06T-€

T00-¢70-AdD-50€

This page shows the
aggregate parts of a load. The
different types of loads are shown
on a separate page.

=

FoLiLoad

CONTINUED

=

FoLiLoadlmage

=8

FoLiLoadContents

FoLiLoadReport

myEndLocation : EcTInt
myLoadName : RWCString
mySize : EcTInt

myStartLocation : EcTInt

myType : RWCString
myUplinkPeriod : FOSTimelnterval

FoLiRTSLoadReport

myCommandList : FmScCommandList
myNumOfCriticalCmds : EcTInt
myRTSBufferNumber : EcTInt
myUplinkTime : RWTime

FoLiUplinkLoad

==
@
1+ +
+

BuildLoad(const FoLiLoadlmage&) : EcTInt
BuildLoadData(EcTInt[]) : EcTInt*
CCSDSWrap(EcTInt[]) : EcTInt*

3.6-5. Load Components

FoLiATCLoadReport

myCommandList : FmScCommandList
myControlCommands : FmScCommandList
myStartTime : RWTime

myStopTime : RWTime

myUplinkTime : RWTime

Derived from this class is FOLIRT SL oadReport, which contains additional information relevant to
RTS loads only, such as a buffer number and number of commands. Also derived from
FoLiLoadReport is FoLiATCLoadReport, which contains information pertinent only to ATC
loads, such as a listing of commands and buffer information. Figure 3.6-6 shows that these
components are al derived from FoDsFile.

Figure 3.6-7 shows the internal interfaces of FmLdLoadCatalog. The constraint checking
performed on RTS loads is done through FmMsValidateConstraints, the interface proxy to the
Command Model. The proxy will accept the request for constraint checking to be done on a
specified RTS load contents, and return an FOMsCM SStatus object, indicating what constraint
violations were found, if any.

The class FmSmMapBuffer isa proxy to the spacecraft model. It isused to request updating of the
spacecraft model when an FoEVEvent specifying a successful load uplink is received.
FmLdLoadCatalog sends a FoMsUpdateBuffer object via the proxy. The proxy is also used to
request deletion of any ATC buffersin the event of alate change. The FoEvEvent specifying the
load uplink is received through FmMslnform, a proxy with the Data Management Subsystem.

The class FmMsStoreATCLoad is a proxy to the FmScScheduleController. Itisused to receive a
reference to an FOLIATCLoad object which was created by FmScScheduleController. The
FoLiATCLoadisstoredin DM S, and a FoL dCatalogEntry iscreated for it and stored aswell. This
proxy can also request Load Catalog to verify that a certain load has or has not been uplinked.

3.6.4 Load Catalog Dynamic Model
The Load Catalog Dynamic Model described in this section consists of the following scenarios:
« Load Catalog Initialization
« Table Load Generation
« Table Load Generation from FDF Load Contents
« Table Load Generation for Clock Correlation
« RTSLoad Generation
e Microprocessor Load Generation
« Flight Software Load Generation
e ATC Load Generation
« Uplink Notification Receipt

3-191 305-CD-042-001

¢61-€

T00-¢70-AdD-50€

B

FoDsFile

myPath : RWCString
myFilename : RWCString

Close(fileptr) : Ectint
Open(file,path,action) : fileptr
Read(fileptr,recptr,size) : Ectint
Write(fileptr,recptr,size) : Ectint

+ + + +

{shared - FDM with all S/S}

/N

=

=

FoLiLoadContents

FoLiLoadlmage FoLiLoadReport

Figure 3.6-6. Load Component File Classes

B

FoLiUplinkLoad

CMS proxy with
Schedule Controller

FoLdCatalogEntry

myCRC : EcTULonglnt
myCriticalFlag : EcTInt

myDASId : EcTInt

myDestination : RWCString
myEndLocation : EcTInt
myLoadName : RWCString
myLoadSize : EcTint

myLoadType : RWCString
myNumPackets : EcTint
myNumTimesSchd : EcTInt
myNumberUplinkLoads : EcTInt=1
myOwner : RWCString
myRTSBufferNumber : EcTInt
mySpacecraftLocation : RWCString
myStartLocation : EcTInt
myStorageLocation : RWCString
myUplinkLoads : RWSlistCollectables
myUplinkTime : RWTime = NULL

{shared - FMN,FUI,FDM,FPS}

1+

FoLdUplinkinfo

myLoadName : RWCString
myTimeOfUplink : RWTime

FmMsStoreATCLoad
=
+ CheckForLoad(EcTInt) : EcTInt
)) + CreateConnection() : EcTInt FdDbAccessor
TEIS Pa?r;-‘ OLf thg gblfffl mOE’[ﬁl + DeleteLoads(const RWSlistCollectables&) : EcTInt
shows the Load Catalog wi B . -
its internal interfaces. The * DestrpyConnectlon() - EcTVoid
external interfaces are shown - Receive() : EcTint
on another page. - Send(const RWCollectable&) : EcTVoid
+ StoreLoad(const FOLIATCLoad&) : EcTInt
sends storage
i requelsts to continued
e FmLdLoadCatalog
FmSmMapBuffer creates/
updates ®
w - - 1+
1 + CreateConnection(EcTVoid) : EcTInt
'«_\3 + DeleteBuffers(const RWSlistCollectables&) : EcTVoid
[o%) + Destroy(EcTVoid) : EcTVoid
+ GetATCBufStartTime(const FoEcTime&) : FmMsATCBufferinfo
+ Receive(EcTVoid) : RWSlistCollectables& s%nds
+ Send(const RWCollectable&) : EcTVoid up tgtes requests
+ UpdateBuffer(const FmMsUpdateBuffer&) : EcTVoid Cogﬁé'&'m
from
CMS proxy with Spacecraft Model
sends to E
S ft Model " n
pacecraft Mode FmMsValidateConstraints
=) ,
+ CreateConnection() : EcTInt
FmMsUpdateBuffer + DestroyConnection() : EcTVoid
~ myBufferlD : EcTint + Receive() : FoMsCMSStatus&_
- myEndLocation : EcTint + Serlld(const RWCollectable&) : FoMsCMSStétus&
- myLoadName : RWCString + ValidateCommands(const FmScConstCk&) : FOMsCMSStatus&
- myStartLocation : EcTint + ValidateRTS(const RWCString&, const RWCString&) : FOMsCMSStatus&

- myTableName : RWCString
- myType : EcTint

CMS proxy with Command Model

T00-¢70-AdD-50€

Figure 3.6-7. Load Catalog Internal Interfaces

3.6.4.1 Load Catalog Initialization Scenario

3.6.4.1.1 Load Catalog Initialization Abstract

The Load Catalog Initialization scenario describes how the L oad Catal og software gets started and
readied for data processing.

3.6.4.1.2 Load Catalog Initialization Summary Information
Interfaces:

« Command Model

e Spacecraft Model

« Planning and Scheduling
Stimulation:

e Load Catalog software started and initialize function called
Desired Response:

e Load Catalog software ready to accept data for processing
Pre-Conditions:

e none
Post-Conditions:
e none

3.6.4.1.3Load Catalog Initialization Description

Figure 3.6-8 shows the Load Catalog Initialization Event Trace. When the initialize function is
called, Load Catal og creates an ipc connection with the Command Model viathe proxy FmMsVal-
idateConstraints. Load catalog then creates an ipc connection to the Spacecraft Model via the
proxy FmMsMapBuffer. Lastly, Load Catal og creates an ipc connection with Planning and Sched-
uling viathe proxy FpRmLoadActDdl. If al of these connections are successfully established, the
initialize function is complete.

3.6.4.2 Table Load Generation Scenario

3.6.4.2.1 Table Load Generation Abstract

The Table Load Generation scenario describes the generation of an uplink table load from atable
load contents file that was created by the user through the Table Editor tool provided by User
Interface.

3-194 305-CD-042-001

S6T-€

T00-¢70-AdD-50€

FmLdLoadCatalog

{CMS proxy with {CMS proxy with
Command Model} Spacecraft Model}

—— creates connection ——>>1

returns success

FmMsValidateConstraints FmSmMapBuffer

nnection >>

ccess status

{PAS proxy with
Load Catalog}

FpRmLoadActDel

creates connection

< status
creates co
=4 returns su
<<

returns success status

Figure 3.6-8. Load Catalog Initialization Event Trace

3.6.4.2.2Table Load Generation Summary Information
Interfaces:

« User Interface

+ Data Management
Stimulus:

» Receipt of aLoad Generation Request from FUI
Desired Response:

« Table Load generated and stored with DMS

« Table Load entered into Load Catalog
Pre-Conditions:

« Load Catalog software has been initiated
Post-Conditions:

» Generated load is available for uplink

3.6.4.2.3Table Load Generation Description

Figure 3.6-9 shows the Table Load Generation Event Trace. The Load Catalog receives a Load
Generation Request, including identifying information about theload contentsfile, from FUI. Load
Catalog creates a Table Load object and passes it the identifying information about the table load
contents. Table Load retrieves the load contents from DMS. Table Load retrieves the table format
from DMS, and uses it with the load contents to create the load image. Table Load generates the
uplink table loads from the load image and requests DMS to store the uplink load, the load
image,the load contents, and the load report. Load Catalog creates a Load Catalog Entry and
requests DM Sto add it to the load catal og database. L oad Catal og sends an Event Messageto DM S
indicating that the load generation is complete and passes a success status to FUI.

3.6.4.3 Table Load Generation from FDF Load Contents Scenario

3.6.4.3.1Table Load Generation from FDF Load Contents Abstract

The Table Load Generation from FDF Load Contents scenario describes how a Table Load will be
generated from externally generated load contents. When an FDF Table Load Contents file is
imported into DMS, CMSis notified. Upon notification, CMSwill generate a Table Load from the
Table Load Contents and creates a Catalog Entry for the Table Load.

3-196 305-CD-042-001

L6T-€

T00-¢70-AdD-50€

{CMS proxy

FoFmTableFormat

with FUI}
FmMsGenerateLoad FoLiTableLoad FoL.iUplinkL.oad FoLiLoadReport DMS
FUI FmLdLoadCatalog FolLiLoadContents FoLiLoadlmage FoLdCatalogEntry
sends
request = sends
| request > y
| creates, >
sends info creates
from info 2]
< returns
status
retrieves from DMS

——=creates from load contents ahd format———>>
[<&— —returns status

for

each ——creates from|load image—>>

4K

<&——returnis status——
brejm >>
<< returns status
stores load contents, load imape, report, and uplink load(s} >>
< returns
status
creates fom info stores
info >
returms << returns status
¢ returns status
status

Figure 3.6-9. Table Load Generation Event Trace

3.6.4.3.2 Table Load Generation from FDF Load Contents Summary Information
Interfaces:

e DMS
Stimulus:

« Receipt of a FDF Load Receipt Notification Event Message from DM S
Desired Response:

« Table Load generated and stored with DMS

« Table Load entered into Load Catalog
Pre-Conditions:

« Load Catalog software has been initialized
Post-Conditions:

» Generated load is available for uplink

3.6.4.3.3Table Load Generation from FDF Load Contents Description

Figure 3.6-10 shows the Table Load Generation from FDF Load Contents Event Trace. DM S re-
ceives an externally-generated Load Contents file from the FDF. Once the load contents has been
validated, DM S informs Load Catalog of the existence of the Load Contentsfile.

The Load Catalog creates a Table Load object and passes it the identifying information about the
table load contents. Table Load retrieves the load contents from DMS. Table Load retrieves the
table format from DMS, and uses it with the load contents to create the load image. Table Load
generatesthe uplink table load from the load image, and then creates the load report. Load Catalog
requests DM S to store the uplink load, the load image, the load contents, and the load report. Load
Catalog creates a L oad Catal og Entry and requests DM Sto add it to the load catal og database. L oad
Catalog sends an Event Message to DM S indicating that the load generation is complete.

3.6.4.4 Table Load Generation for Clock Correlation Scenario

3.6.4.4.1 Table Load Generation for Clock Correlation Abstract

The Table Load Generation for Clock Correlation scenario describes how a Table Load is gener-
ated from aload contents file received from the Analysis subsystem.

3-198 305-CD-042-001

661-€

T00-¢70-AdD-50€

{cms

proxy

with DMS}

DMS

sends notification
|~ event message >

sends >

| notification

retrieve:

I<&-stores load content

5, load image, rep

returns status

returns input file

FmMsInform £ g1 oadCatalog

FoLiTableLoad

FoLiLoadContents

FoLiUpl

5 input file:

| creates/ >
sends filename | sends >
filename
>>1
¢ returns
status

for
each
4K

brt, and uplink load(s)}—

inkLoad

FoLiLoadlmage

creates fro|

—

——creates from

<&—returnis status———

m load contents al

nd format———>>

r—returns status

load image——>|

FoLiLoadReport

FoLdCatalogEntry

retrieves from DMS

<<

<<——

stores load paral

reates from load

meters

crejes
returris statu

arameters

returns s

atus

Figure 3.6-10. Table Load Generation from FDF Load Contents Event Trace

FoFmTableFormat

3.6.4.4.2 Table Load Generation for Clock Correlation Summary Information
Interfaces:

e Anaysis

- DMS
Stimulus:

« Receipt of atable generation request from Analysis
Desired Response:

« Table Load generated and stored with DMS

« Table Load entered into Load Catalog
Pre-Conditions:

« Load Catalog software has been initiated
Post-Conditions:

« Table Load available for uplink

3.6.4.4.3 Table Load Generation for Clock Correlation Description

Figure 3.6-11 showsthe Table Load Generation for Clock Correlation Event Trace. The Load Cat-
alog receives a table load generation request from Analysis via the proxy FmMsGenTable. The
Load Catalog reads the table |oad generation request to learn the location of the load contentsfile.

The Load Catalog creates a Table Load object and passes it the identifying information about the
table load contents. Table Load retrieves the load contents from DMS. Table Load retrieves the
table format from DMS, and uses it with the load contents to create the load image. Table Load
generatesthe uplink table load from the load image, and then creates the load report. Load Catalog
requests DM S to store the uplink load, the load image, the load contents, and the load report. Load
Catalog creates a L oad Catal og Entry and requests DM Sto add it to the load catal og database. L oad
Catalog sends an Event Message to DM S indicating that the load generation is complete.

3.6.4.5 RTS Load Generation Scenario

3.6.4.5.1 RTS Load Generation Abstract

The RTS Load Generation scenario describes the generation of an uplink RTS load from an RTS
load contents file that was created by the user through the RTSEditor tool provided by User
Interface.

3-200 305-CD-042-001

{CMS proxy

T0C-€

T00-¢70-AdD-50€

Figure 3.6-11. Table Load Generation for Clock Correlation Event Trace

with ANA}
FmMsGenTable FmLdLoadCatalog FoLiTableLoad FoLiUplinkLoad FolLiLoadReport DMS
FoLiLoadContents FoLiLoadlmage FoLdCatalogEntry
sends table
[load gen request > FoFmTableFormat
| creates/ >
sends filename
| sends >
filename
retrieves input file >
<< returns|input file
< returns
status
retrieves flom DMS >
creates from load contents and format———>>
<&——t—returns status
for
ei\ch ——creates from|load image —>>
<&<—returns status————
crejes >
<< returns status
stofes load contents, [load image, repor{, and uplink load($) >>1
<< returns status
< returns
status
reates from load parameters >>
stores load parameters ——=>|
<& returns sratug
< returns success__|
status

3.6.4.5.2 RTS Load Generation Summary Information
Interfaces:

« User Interface

+ Data Management

« Command Model
Stimulus:

« Receipt of Load Generation Request from FUI
Desired Response:

+ RTSLoad generated and stored with DMS

« RTSLoad entered in RTS Load Catalog
Pre-Conditions:

« Load Catalog software has been initiated
Post-Conditions:

» Generated load is available for uplink

3.6.4.5.3 RTS Load Generation Description

Figure 3.6-12 shows the RTS Load Generation Event Trace. The Load Catalog receives a Load
Generation Request, including identifying information about the load contents file, from FUI.
Load Catalog requests a constraint check from the Command Model on the load contents file.
Command Model returns a status, which is returned to FUI if constraints are found. FUI has the
option to override soft constraints or terminate the load generation process. If no constraints
violations are found, or if soft constraint violations are overridden, Load Catalog creates an RTS
Load object and passes it the identifying information about the RTS load contents. RTS Load
retrieves the load contents from DMS. RTS Load generates the uplink RTS load from the load
contents and requests DM S to store the uplink load, load image, load contents, and the load report.
L oad Catalog creates a L oad Catalog Entry and requests DM Sto add it to the load catal og database.
L oad Catalog sends an Event Message to DM S indicating that the load generation is complete and
passes a success status to FUI.

3-202 305-CD-042-001

€0c-€

T00-¢70-AdD-50€

FmLdLoadCatalog

{CMS proxy with FUI}

sends load
gen request >

g retums constraint __|
check results

overrides soft >
constraints

& returns success __|
status

FmMsGenerateLoad

check results

constraints

g retums success
status

sends load >
gen request

returns constraint
<< —

overrides soft >

sends load >
contents

< returns constraint __|
check results

sends load
request

& returns succef

{CMS proxy with
Command Model}

FmMsValidateConstraints

FoLiLoadContents

FoLiRTSLoadReport DMS
FoLiLoadimage
FoLiUplinkLoad FoLdCatalogEntry
FoLiRTSLoad
en >
sends >
filename
retrieves load contents file >>
<< returns load contents filg
< returns
success status
sends load|contents ———————=>>f
[1
creates
binary
[<&—— returns sufcess status {
for
each creates from load image +—————————>>1
4K
creales >
stores load report, uplink load, lpad image, and load contgnts >>1
<< returns sucess status
iss status
creates from load parameters
[——— stores ——>>
< retums success
returns success stafus status

Figure 3.6-12. RTS Load Generation Event Trace

3.6.4.6 Microprocessor Load Generation Scenario

3.6.4.6.1 Microprocessor Load Generation Abstract

The Microprocessor Load Generation scenario describes the generation of an uplink
microprocessor load from a microprocessor load contents file that was created outside of the FOS
and imported viaan IST or EOC workstation.

3.6.4.6.2 Microprocessor Load Generation Summary Information
Interfaces:

« User Interface

« Data Management
Stimulus:

« Receipt of Load Generation Request from FUI
Desired Response:

¢ Microprocessor Load generated and stored with DMS

« Microprocessor Load entered in microprocessor Load Catalog
Pre-Conditions:

« Load Catalog software has been initiated
Post-Conditions:

» Generated load is available for uplink

3.6.4.6.3 Microprocessor Load Generation Description

Figure 3.6-13 showsthe Microprocessor L oad Generation Event Trace. The Load Catalog receives
a Load Generation Request, including identifying information about the load contents file, from
FUI. Load Catalog creates a Microprocessor Load object and passesit the identifying information
about the microprocessor load contents. Microprocessor Load retrieves the load contents from
DMS. Microprocessor Load generates the uplink microprocessor load from the load contents and
requests DM Sto store the uplink load, load contents, |oad image, and theload report. Load Catal og
createsal oad Catalog Entry and requests DM Sto add it to the load catal og database. L oad Catal og
sends an Event Message to DMS indicating that the load generation is complete and passes a
success status to FUI.

3-204 305-CD-042-001

S0c-€

T00-¢70-AdD-50€

{CMS prox

sends load
gen request >

g retums constraint __|
check results

overrides soft >
constraints

& returns success __|
status

FmMsGenerateLoad

FmLdLoadCatalog

y with FUI}

sends load >
gen request

g retums constraint _|
check results

overrides soft >
constraints

sends load >
contents

Iz e

{CMS proxy with
Command Model}

FmMsValidateConstraints

turns constraint _|
check results

sends load gen
request >

FoLiLoadContents

[<&— returns succefss status —————j

g retums success
status

FoLiRTSLoadReport DMS
FoLiLoadimage
FoLiUplinkLoad FoLdCatalogEntry
FoLiRTSLoad
sends >
filename
retrieves load contents file >>
<< returns load contents filg
< returns
success status
sends load|contents ———————=>>f
[1
creates
binary
[<&—— returns sufcess status {
for
each creates from load image +—————————>>1
4K
creales >
stores load report, uplink load, lpad image, and load contgnts >>1
<< returns sucess status
creates from load parameters
[——— stores ——>>
< retums success
returns success stafus status

Figure 3.6-13. Microprocessor Load Generation Event Trace

3.6.4.7 Flight Software Load Generation Scenario

3.6.4.7.1 Flight Software Load Generation Abstract

TheFlight Software L oad Generation scenario describesthe generation of an uplink flight software
load from aflight software |load contents file that was created outside of the FOS and imported via
an IST or EOC workstation.

3.6.4.7.2 Flight Software Load Generation Summary Information
Interfaces:

« User Interface

« Data Management
Stimulus:

« Receipt of Load Generation Request from FUI
Desired Response:

« Flight Software Load generated and stored with DM S

« Flight Software Load entered in Flight software Load Catalog
Pre-Conditions:

« Load Catalog software has been initiated
Post-Conditions:

» Generated load is available for uplink

3.6.4.7.3 Flight Software Load Generation Description

Figure 3.6-14 shows the Flight Software L oad Generaton Event Trace. The Load Catalog receives
a Load Generation Request, including identifying information about the load contents file, from
FUI. Load Catalog creates a Flight Software Load object and passesit the identifying information
about the flight software load contents. Flight Software Load retrieves the load contents from
DMS. Fight Software Load generates the uplink flight software load from the load contents and
requests DM Sto store the uplink load, load contents, |oad image, and theload report. Load Catal og
createsal oad Catalog Entry and requests DM Sto add it to the load catal og database. L oad Catal og
sends an Event Message to DMS indicating that the load generation is complete and passes a
success status to FUI.

3-206 305-CD-042-001

L0C-€

T00-¢70-AdD-50€

{CMS proxy

FOS
User Interface

request flight

generation

status

—software load—>>f

returns success
<<— —

with FUI}
FmMsGenerateLoad

sends load gen
[request =

< returns success
status

FmLdLoadCatalog

creates———>>
requests load
<< returns loa
passes input
T fle >
———=creates from lpad contents———>>
for .
each |——— <[eates from load imager———>>
4K

FoLiFlightLoad

FoLiLoadContents

FoLiLoadlmage

FoLiUpl

returns success__|
status

feturns su

inkLoad FoLiLoadReport FoLdCatalogEntry DMs
contents fil >>
contents file
>>|
uplink load(s), and logdd repokt: >>
ccess statu:
I >t
stores——>>1
¢ retums success_|
status

tores logd contents, load image|
<<
regtes from load paramet¢
<< returns success statu

Figure 3.6-14. Flight Software Load Generation Event Trace

3.6.4.8 ATC Load Generation Scenario

3.6.4.8.1 ATC Load Generation Abstract

The ATC Load Generation scenario describes the generation of an ATC Load from adirective list.
An uplinkable form of the ATC Load will be generated, as well as a Load Report, a Load Image,
and aLoad Contentsfile. The ATC Load will have with it aLoad Catalog Entry with its pertinent
information.

3.6.4.8.2 ATC Load Generation Summary Information
Interfaces:

« Schedule Controller

- DMS
Stimulus:

« Receipt of adirective list from the Schedule Controller
Desired Response:

« ATCUplink Load, Load Image,L oad Contents, and L oad Report generated and stored with
DMS

« ATC Load entered into ATC Load Catalog
Pre-Conditions:

« Load Catalog software has been initialized
Post-Conditions:

» Generated load is available for uplink

3.6.4.8.3 ATC Load Generation Description

Figure 3.6-15 shows the ATC Load Generation Event Trace. An FOLIATCLoad object is created
and passed a list of commands. ATC Load converts these commands to their binary form and
placesthemin aload contentsfile. ATC Load generatestheload image from theload contentsfile.
ATC Load generates the uplink load from the load image by packetizing the load image and
converting the load image to the proper spacecraft format. ATC Load createsthe load report. The
report, uplink load, load image, and load contents are stored with DMS. ATC Schedule sends the
ATC Load to Load Catalog via the proxy FmMsStoreATCLoad. Load Catalog creates a Load
Catalog Entry and requests DMS to add it to the load catalog database. Load Catalog passes a
success message back to ATC Schedule.

3-208 305-CD-042-001

602-€

T00-¢70-AdD-50€

{proxy with ATC Schedule}

FoLiATCLoad FoLiLoadimage
EmScATCSchedule FoLiLoadContents FoLiUplinkLoad) FmMsStoreATCLoad FmLdLoadCatalog DMS
FoLiATCLoadReport FoldCatalogEntry
sends >
directives |___creates from
directives

———=¢reates from Ipad contents———>>

[<&—eturns sugcess status—————
for .

each from load imagg——>>
pa
creafes >>
tores report, load coptents, and uplink load(sy >>
<< feturn success status
< return success
status |
sends|load >>
sends load S
via ipc
Creates——>>
—stores data—>>]
[<<—eturns status—j
returns status
< via ipc
<< feturns sugcess status

Figure 3.6-15. ATC Load Generation Event Trace

3.6.4.9 Uplink Notification Receipt Scenario

3.6.4.9.1 Uplink Notification Receipt Abstract

The Uplink Notification Receipt Scenario describes the updating of aLoad Catalog Entry with the
uplinked time of the load. Load Catalog receives an event message with the load name and time
of uplink, and proceeds to update the appropriate Catalog Entry.

3.6.4.9.2 Uplink Notification Receipt Summary Information
Interfaces:

- DMS
Stimulus:

« Receipt of Load Uplink Status Event Message from DM S
Desired Response:

« Updated Load Catalog Entry stored with DMS
Pre-Conditions:

« Load Catalog software has been initiated
Post-Conditions:

« Update information sent to Spacecraft Model

3.6.4.9.3 Uplink Notification Receipt Description

Figure 3.6-16 shows the Uplink Notification Receipt Event Trace. Load Catalog receives a
FoEvEvent message specifying the name of the load that has been uplinked and the time of uplink.
Load Catalog creates a Catalog Entry object and requests DM Sto retrieve the catalog entry for the
specified load name. Load catal og updates the uplink timein the catalog entry's Uplink Info object.
If thisisthe last uplink load (partition) for this load name, Load Catalog updates the uplink time
in the Catalog Entry object and requests DMS to update the Catalog Entry for the load. Load
Catalog creates a FmMsUpdateBuffer request and sends it to FmSmMapBuffer, the proxy to
Spacecraft Model.

3-210 305-CD-042-001

T1¢-€

T00-¢70-AdD-50€

DMS

sends uplink

message

— notification event —>

{CMS proxy with
Spacecraft Model

{CMS proxy
with DMS}
FmMslnform FmLdLoadCatalog FoLdCatalogEntry Fol.dUplinkinfo
— sends update request —>>|
updates time ——=>
—— updates time —>>
<&—returns info
sendp update buffer request

}

FmSmMapBuffer
>>1
sends update
buffer request

Figure 3.6-16. Uplink Notification Receipt Event Trace

FmSmSpacecraftModel

—>>

3.6.5 Load Catalog Data Dictionary

System Include Files

rw collect.h
rw dlistcol.h

Include Files
EcTypes. h

Preprocessor Macros
_FnmiLdLoadCat al og_h_

Types
cl ass FnlidLoadCat al og

class definition

Base Classes
public RWCol | ect abl e

Public Functions

EcTl nt CheckFor Upl i nk(ECTI nt)

Checksto seeif aload with the given DAS id has been uplinked to the spacecraft. Returns TRUE if the load has been
uplinked.

EcTVoi d Constrai nt Check(const FoMsRTSLoadCGenReq&)
Sends an RTS|oad contents file to the Command Model for constraint checking.

EcTl nt CreateCatal ogEntry(const FoLi ATCLoad&)

After an ATC load has been generated, creates aload catalog entry from information in the load and stores both the entry
and the load in the database.

EcTl nt CreateCatal ogEntry(FoMsLoadGenReq*)

After any load (except for ATC) has been successfully generated, creates aload catalog entry from information in the load
gen request and stores the entry in the database.

EcTVoi d Handl eMessage()

Determines what type of messageit has received, callsthe appropriate process function, and sends the return value of that
function to the proxy.

EcTVoi d MakeFSW oad(const FoMsFSW.oadGenReq&)
Constructs a flight software load from the request.

EcTVoi d MakeM crol oad(const FoMsMPLoadCGenReq&)
Constructs a microprocessor load from the request.

EcTVoi d MakeRTS| oad(const FoMsRTSLoadGenReq&)
Constructs a RTS load from the request.

EcTVoi d MakeTabl el oad(const FoMsTabl eLoadGenReq&)
Constructs a table load from the request.

EcTlnt ProcessDel eti ons(const RWSl i st Col | ect abl es&)
Deletes al loads on the input list from the load catal og.

3-212 305-CD-042-001

EcTVoi d ProcessLoadGenRequest (const FoMsLoadGenReq&)
Makes the appropriate load for the request, performs constraint checking as necessary, and returns a status.

EcTVoi d ProcessLoadUpl i nkSt at us(const FoEvEvent &)
Calls UpdateCatal ogEntry() and passes in the event, and sends an update request to spacecraft model.

EcTInt ToFUl (const FoMsCMSSt at us&)
Sends the input object to the proxy, which will send it to FUI.

EcTl nt Updat eCat al ogEntry(const RWCStri ng&)
Fetches the appropriate catalog entry from the database, and increments the number of times scheduled.

Fmves Updat eBuf f er & Updat eCat al ogEntry(const FoEvEvent &)
Fetches the appropriate catalog entry from the database, and updates it with the information in the status.
Private Data

FoEvEvent* nyEvent Ptr
A pointer to an event.

FoMsCMSSt at us myProcessi ngSt at us
The result of the processing of any load. This attribute will be changed after every load processing.

System Include Files
rw col l ect.h

Preprocessor Macros
_FmvsCat al ogUpdate_h_

Types
cl ass FnivsCat al ogUpdat e

Base Classes
public RWCol | ect abl e

Public Functions

EcTVoi d LoadSchedul ed(const HString&)
Called by PASto notify Load Catalog that a certain load has been scheduled for uplink.

Private Functions
EcTl nt Creat eConnection(void)
Creates the two-way connection between this proxy and FmLdL oadCatal og.
EcTVoi d DestroyConnecti on(voi d)
Destroys the connection between this proxy and FmLdL oadCatal og.

EcTl nt Send(const RWCString&)
Sends an object to FmLdL oadCatalog via IPC.

3-213 305-CD-042-001

System Include Files
rw col l ect.h

Preprocessor Macros
_FoMsGenlnfo_h_

Types
cl ass FoMsGenl nfo

class definition

Base Classes
public RWCol | ect abl e

Private Data

RWCString nyDirectory
Directory where the table data is located.

RWCSt ri ng nmyFi | enane
File that contains the table data.

RWCSt ri ng nyTabl eName
Name of the table for which the load is to be generated.

System Include Files
rw col l ect.h

Preprocessor Macros
_FmvsGenTabl e_h_

Types
cl ass FnmvsGenTabl e

class definition

Base Classes
public RWCol | ect abl e

Public Functions

EcTl nt MakeTabl eLoad(const FoMsGenl nf 0&)

Called by ANA. Sendsthe value of FoMsGeninfo to FmL dL oadCatal og via | PC requesting the generation of atableload
and waits for a response of success or failure.

Private Functions

EcTInt CreateConnection()
Creates the two-way connection between this proxy and FmLdL oadCatal og.

EcTVoi d DestroyConnection()
Destroys the connection between this proxy and FmLdL oadCatal og.

3-214 305-CD-042-001

FoMsCVBSt at us& Recei ve()
Receives an EcTInt from FmLdLoadCatalog via |PC and returnsit.

EcTVoi d Send(const FoMsGenl nf 0&)
Sends an object to FmLdLoadCatalog via I PC.

System Include Files
rw col l ect.h

Preprocessor Macros
_FmVCGener at eLoad_h_

Types
cl ass FnmMvsCGener at eLoad

class definition

Base Classes
public RWCol | ect abl e

Public Functions
FoMsCMBSt at us& Constrai nt Overri de(option)
Sends the value of option to FmLdLoadCatalog via | PC and waits for a response.
EcTInt CreateConnection()
Creates the two-way connection between this proxy and FmLdL oadCatal og.
EcTVoi d DestroyConnection()
Destroys the connection between this proxy and FmLdL oadCatal og.
FoMsCMBSt at us& Cener at eLoad(const FoMsLoadGenReq&)
Called by FUI to send the load gen request. Returns aresponse.
Public Types
enum option

Enumerators

n
y

Private Functions

FoMsCMVBSt at us& Recei ve()
Receives an FoOMsCM SStatus object from FmLdLoadCatalog via IPC and returnsiit.

EcTVoi d Send(const RWCol | ect abl e&)
Sends an object to FmLdLoadCatalog via I PC.

3-215 305-CD-042-001

Preprocessor Macros
_Fmvsl nform h

Types
class Fnmvsl nform

Public Functions

EcTVoi d | nf ornCMS(const FoEvEvent &)

Called by DM S to send Load Catalog an event message. This operation is used to notify CM S that aload has been up-
linked or that aload contents file has been imported into DMS.

Private Functions
EcTl nt Creat eConnection(void)
Creates the two-way connection between this proxy and FmLdL oadCatal og.
EcTVoi d DestroyConnecti on(voi d)
Destroys the connection between this proxy and FmLdL oadCatal og.

EcTVoi d Send(const RWCol | ect abl e&)
Sends an object to FmLdLoadCatalog via | PC.

Preprocessor Macros
_FmVs St or eATCLoad_h_

Types

cl ass FnmvsSt or eATCLoad

class definition - This class represents an interface between the ATC Schedule and the Load Catalog. It usesipc to relay in-
formation between this class and the Load Catalog. ATC Schedule sends information to this class via function calls.

Public Functions

EcTl nt CheckFor Load(EcTI nt)

Called by ATC Schedule to send a DAS Id to the Load Catalog and get back an integer status, indicating that the load
associated with this DAS Id has or has not been uplinked.

EcTInt CreateConnection()

Creates the two-way connection between this proxy and FmLdL oadCatal og.
EcTl nt Del et eLoads(const RWSl i st Col | ect abl es&)

Caled by ATC Schedule to delete all loads on theinput list. Returns aresponse.
EcTVoi d DestroyConnecti on()

Destroys the connection between this proxy and FmLdL oadCatal og.
EcTl nt Receive()

Receives an FOM sCM SStatus object from FmLdLoadCatalog via |PC and returnsiit.
EcTVoi d Send(const RWCol | ect abl e&)

Sends an object to FmLdLoadCatalog via I PC.

EcTInt StorelLoad(const FoLi ATCLoad&)
Called by ATC Schedule to send aload for storage. Returns a response.

3-216 305-CD-042-001

Preprocessor Macros
_FmvsUpdat eBuf fer _h_

Types

cl ass FnmvsUpdat eBuf f er
This class represents a message from the CM S load catal og to update the ATC/RTS buffers. It is sent from the load catalog
when an uplink verification is received from the Command Subsystem It is also used to update the ground image.
Private Data
EcTint nyBufferlD
Represent the buffer number that needs to be updated, pertains to RTS buffer number
EcTl nt nmyEndLocat i on
Represent the End location in the buffer
RWCSt ri ng nmyLoadNane
Represents the load that was uplinked
EcTlnt nyStartlLocation
Represents the start location in the buffer
RWCSt ri ng nyTabl eName
Represents the table name for the buffer update

EcTInt nyType
represents the type of buffer affected by the uplink

Preprocessor Macros
_FmvsVal i dat eConstraints_h_

Types

cl ass FmvsVal i dat eConstraints
This class represents the interface proxy class between CM Sinternal subsystems and the FmCcCommandModel class. FmC-
cCommandM odel manages the command rule-based constraint checking.
Public Functions

EcTl nt CreateConnection(void)

Establishes aconnection with FmCcCommandModel to receive constraint checking request from the schedul e controller
and the load catalog

EcTVoi d DestroyConnecti on(voi d)
Destroys the connection with FmCcCommandModel
FoMs CVBSt at us& Recei ve(voi d)
Receives the results of rule-base command constraint checking, FOMsCM SStatus

FoMsCMBSt at us& Send(const RWCol | ect abl e&)

Sends either aFmScConstCk command list from the schedul e controller or aFoEcDirectivelist created from an RTS|oad
contents file to the FmCcCommandModel for rule-base command constraint checking

FoMsCVBSt at us& Val i dat eConmmands(const FrScConst Ck&)

FmScScheduleController invokes this function to send the DA S scheduled command list to be command rule-based con-
straint checked

3-217 305-CD-042-001

FoMsCVBSt at us& Val i dat eRTS(const RACStri ng&, const RWCString&)

FmLdLoadCatalog invokes this function to send the directory name and load name from the generate RTS load request
to be command rule-based constraint checked. Thisfunction createsthe FmMnDirectiveList to the FmCcCommandMod-
el.

Preprocessor Macros
_FnSmivapBuffer _h_

Types

cl ass FnSnivapBuUf f er

This classrepresentsthe interface proxy class between CM Sinternal subsystems and the FmSmSpacecraft class. FmSmSpace-
craft manages the buffer modeling for ATC, RTS and table buffers and the ground

i magi ng.
Public Functions
EcTl nt Creat eConnecti on(EcTVoi d)
Establishes a connection with FmSmSpacecraft to receive requests from the schedule controller and the load catalog

EcTVoi d Del et eBuf f ers(const RWHl i st Col | ect abl es&)

Request received from load catalog when a late change as been successfully processed. The predicted buffer models as-
sociated with all of the generated loads are deleted. Instantiates an FmMsDeleteATCBuffers object.

EcTVoi d Destroy(EcTVoi d)
Destroys the connection with FmCcCommandModel

FmVBATCBuUf f er I nf o Get ATCBuUf St art Ti ne(const FoECTi ne&)
Requeststhe start time of the 1st command in the buffer that will be used to model the newly received DAS or late change
request
RWEl i st Col | ect abl es& MapATC(const FnivhDirecti velLi st& const FOSTi nel nter-
val & const FoEcTi ne&, const EcTInt&)

Request FmSmSpacecraft to map the command list into an ATC buffer model. Instantiates an FmMsATCM apReguest
object to be sent to FmSmSpacecraft.

RWEl i st Col | ect abl es& MapLat eChange(const FnivhDirectiveli st& const FOS-
Ti mel nterval & const FoEcTi ne& const EcTI nt &)

Requests FmSmSpacecraft to map the late change command list into the correct buffer model. Instantiatesan FMMSsATC-
MapRequest object to be sent to FmSmSpacecraft.

RWEl i st Col | ect abl es& Recei ve(EcTVoi d)

Receives the response from FmSmSpacecraftModel 1t receives either A list of FmMsLoadData objects or a
FmMsATCBUufferInfo object

EcTVoi d Send(const RWCol | ect abl e&)

Sends messages to FmSmSpacecraftModel. Sends FMMsATCM apRequest, FmMsDeleteATCBuffers, or FmMsUpdate-
Buffer.

EcTVoi d Updat eBuf fer(const FmvsUpdat eBuf f er &)
Request the buffer be updated to a new status

3-218 305-CD-042-001

System Include Files
rw col l ect.h

Preprocessor Macros
_FoFnDat aFi el d_h_

Types
cl ass FoFnmDat aFi el d

class definition

Base Classes
public RWCol | ect abl e

Public Functions

RVBIi t Vec ProduceBi nary()
Produces the binary form of thisfield.

Private Data

RWCString nmyDataUnits

The units of the field value.
RWCSt ri ng nyFi el dDescri pt or

Textual information describing the field and its value.
EcTl nt nyFi el dNunber

A unique value which identifies the field within the table.
EcTl nt nmyRangeCheckFl ag

An indicator of whether range checking is to be performed.
EcTl nt nyScal eFact or

The scale factor to be applied to the word value within thisfield.
EcTl nt nyTabl eNunber

A unique value specifying amemory table.
EcTInt nyVal ueBitSi ze

The size of the value in bits.

EcTI nt nyVal ueOverri deFl ag

An indicator of whether the value may be overwritten with a new value during table generation.

RWCSt ri ng nyVal ueType
The data type of the value in thisfield.

3-219

305-CD-042-001

Include Files
FdDbAccessor. h

Preprocessor Macros
_FoFnmTabl eFormat _h__

Types

cl ass FoFniTabl eFor mat
class definition

Base Classes

publ i c FdDbAccessor

Public Functions
RVBIi t Vec ProduceBi nary()
Produces the binary form of each field in the table.
Private Data

RWCSt ri ng myDescri ptor
Textua information describing the table.

EcTI nt nmyMaxSi ze
The maximum number of words allowed in the table.

EcTl nt nyStart Address
The starting location in memory for the table.

RWCSt ri ng nyTabl eMhenoni c
The name that is used to reference the table.

EcTl nt nyTabl eNunber
A unique value identifying the table.

RWCSt ri ng nyTabl eType
The type of memory table.

Include Files
FdDbAccessor. h

Preprocessor Macros
_FoLdCat al ogEntry_h_

Types
cl ass FoLdCat al ogEntry

class definition

3-220

305-CD-042-001

Base Classes

publ i c FdDbAccessor

Private Data
EcTl nt nyDASId

The DASId which the load covers. Thisisonly valid for ATC loads.

EcTl nt nyEndLocati on
The last location in memory used by the load.

RWCSt ri ng nyLoadNane
The name of the load.

EcTInt nyLoadSi ze
The number of bytesin the load.

RWCSt ri ng nyLoadType
Theload type. ATC, RTS, TAB, MP, or FSW.

EcTl nt myNunili mesSchd

The number of times that the load has been scheduled for uplink.

RWCSt ri ng nyOwner
The owner of the load.

EcTl nt nyRTSBuf f er

The number of the buffer in which the RTS load is going to reside.

RWCSt ri ng nySpacecraftLocation
The location of the load on the spacecraft.

EcTint nyStartlLocation

Thefirst location in memory used by the load.
RWCSt ri ng nyStoragelLocation

The location of the load in storage on the ground.
RWEIl i st Col | ect abl es nmyUpl i nkLoads

A list of uplink loads associated with this load.

RWIi e nyUpl i nkTi e

The time at which the load was actually uplinked to the spacecraft.

FOSTi nel nt erval nyVal i dUpl i nkPeri od
The valid uplink period of the load.

Include Files
FoLi LoadReport. h

Preprocessor Macros
_FoLi ATCLoadReport _h_

Types
cl ass FoLi ATCLoadReport

class definition

3-221

305-CD-042-001

Base Classes

publ i c FolLi LoadReport

Private Data

FmivhDi r ecti veLi st nyConmmandLi st
Theentirelist of commands which constitute the load.

FmvhDi recti veLi st myCont r ol Conmands
The control commands contained in the load.

RWi me nyStartTine
The time of the first command in the load.

RWIi ne nySt opTi ne
the time of the last command in the load.

Include Files
FoLi Load. h

Preprocessor Macros
_FoLi Flight Load_h_

Types
cl ass FoLi Fl i ght Load

stp/omt class definition 174512 - This class represents a flight software load. The class maintains |oad-related information.
The class contains behaviors necessary to produce the load's uplink form and load report.

Base Classes

public FoLi Load

Public Functions
EcTl nt Buil dUpli nkLoad()
Formats the load contents into an appropriate storage command and generates the load report.
Private Data

EcTlI nt nmyEndi ngLocati on
The last memory location used by the load.

EcTl nt nmyMenoryUpdat eSi ze
The size of the load in bytes.

EcTlint nyStartinglLocation
Thefirst location in memory used by the load.

3-222 305-CD-042-001

System Include Files
rw col l ect.h

Preprocessor Macros
_FolLi Load_h_

Types
cl ass FolLi Load

Base Classes
public RWCol | ect abl e

Public Functions
virtual EcTInt Buil dUplinkLoad(const FolLi Loadl mage&)
Builds the uplinkable load and the load report.
FoMsCMBSt at us& Cr eat eLoad(const FoMsLoadGenReq&)
Reads in the file from the request and creates the load.

EcTl nt Gener at eLoadl mage(const FoLi LoadCont ent s&)
Generates the binary for the load and storesitin afile.

Private Data
RWCString myDesti nation
The destination on the spacecraft for the load.
RWCString nyDirectory
The directory where the load contents file from which the load is generated exists.
FoLi LoadCont ents nmyLoadCont ent s
The load contents object.
RWCSt ri ng nyLoadNane
The name of the load.
EcTl nt nyLoadSi ze
The size of the load in bytes.
EcTl nt nmyNunber O Pi eces
The number of uplink loads for this load.
RWCSt ri ng nmyOaner
Theid of the owner of the load.
EcTInt nySi zeOf Last Pi ece
The number of bytes of the last uplinkable load.
EcTl nt nySpacecraftld
The id of the spacecraft for which the load is valid.
FoMsCVBSt at us ny St at us
The processing status of the load.

RWSl i st Col | ect abl es nmyUpl i nkLoads
The uplinkable portions of the load.

3-223

305-CD-042-001

FOSTi nel nt erval myUpl i nkPeri od
The uplink period of the load.

Include Files
FoDsFil e. h

Preprocessor Macros
_FoLi LoadContents_h_

Types

cl ass FoLi LoadCont ent s

class definition - This class represents afile into which the load contents are placed. The load contents are sent directly to
CMS from an external interface, except in the case of ATC.

Base Classes
public FoDsFile

Include Files
FoDsFi |l e

Preprocessor Macros
_FoLi LoadReport _h_

Types

cl ass FoLi LoadReport
class definition

Base Classes
public FoDsFile

Private Data

EcTl nt nmyEndLocat i on

The last memory location used by the load.
RWCSt ri ng nmyLoadNane

The name of the load for which this report was written.
EcTlint nySize

The size of the load in bytes.
EcTlnt nyStartlLocation

The first memory location used by the load.
RWCString nyType

the type of the load for which this report was written.
FOSTi nel nterval myUpl i nkPeri od

The uplink window of the load for which this report was written.

3-224 305-CD-042-001

Include Files
FoLi Load. h

Preprocessor Macros
_FoLi M croLoad_h_

Types
cl ass FoLi M crolLoad

stp/omt class definition 174512 - This class represents amicroprocessor load. The class maintains load-related information.

The class contains behavior necessary to produce the load's uplink form and load report.

Base Classes

public FolLi Load

Public Functions
EcTl nt Buil dUpl i nkLoad()
Formats the load contents into an appropriate storage command and generates the load report.
Private Data

EcTl nt nyEndi ngLocati on
The last memory location used by the load.

EcTl nt nmyMenoryUpdat eSi ze
The size of the load in bytes.

EcTInt nyStartinglLocation
Thefirst location in memory used by the load.
Include Files
FoLi Load. h

Preprocessor Macros
_FoLi RTSLoad_h_

Types
cl ass FolLi RTSLoad
class definition
Base Classes

publi c FoLi Load

Public Functions
EcTl nt Buil dUpli nkLoad(const FoMsLoadGenReq&)
Builds the uplinkable load and the load report.

FoMsCMVBSt at us& Cr eat eLoad(const FoMsLoadGenReqé&)
Creates the load from the |oad gen request and returns a status.

3-225

305-CD-042-001

EcTl nt Gener at eBi nary(RWFi | e&)
Creates the binary for each command in the command list.

Private Data

RWDI i st Col | ect abl es nyCri ti cal Comrands
A list of commandsin the load which are flagged as critical.

RWDI i st Col | ect abl es nyDirectiveli st
Theentirelist of directives which define the load.

EcTl nt nyRTSBuff Destination
The buffer number in which the load will reside on the spacecraft.

Include Files
FoLi Load. h

Preprocessor Macros
_FoLi Tabl eLoad_h_

Types

cl ass FolLi Tabl eLoad
class definition

Base Classes

public FolLi Load

Public Functions

EcTl nt Buil dUpl i nkLoad()
Constructs the uplinkable form of the load.

EcTl nt ConposeReport ()
Populates the load report with the pertinent information about the load.

EcTlnt CreatelLoad(const FoMsTabl eLoadGenReq&)
Generates the uplinkable load based on the request.

EcTl nt Cener at eLoadl mage(const FolLi LoadCont ent s&)
Generates the load image from the contents.

FoFnirabl eFor mat Retri eveTabl eFor mat (const RWCStri ng&)
Retrieves the appropriate format for this table from DMS.

Private Data

EcTl nt nyEndLocati on
The ending location in memory for the table load.

FoLi LoadReport nyLoadReport
The load report associated with this load.

EcTlint nyStartlLocation
The starting location in memory for the table load.

3-226 305-CD-042-001

RWCSt ri ng nmyTabl eNane

The name of the table for which thisload is valid. Table nameis used to find the format in DMS.

Include Files
FoDsFil e. h

Preprocessor Macros
_FoLi Upl i nkLoad_h_

Types
cl ass FoLi Upl i nkLoad

class definition

Base Classes
public FoDsFile

Public Functions

EcTl nt Buil dLoad(const FoLi Loadl mage&)
Generates the CRC for the load, puts the load into packets, and stores the load with DMS.

EcTl nt* Buil dLoadDat a(EcTI nt *)
Sets the command destination information and fills in the command data.

EcTI nt* CCSDSW ap(EcTI nt *)
Generates the packets for the load.

System Include Files
rw col l ect.h

Preprocessor Macros
_FoMsCMVSSt at us_h

Types
cl ass FoMsCMSSt at us

class definition

Base Classes
public RWCol | ect abl e

Private Data

EcTint nyld
Theid of this message.

RWCStri ng nyStat us

Pertinent information about the status object. Mostly used to explain why a process failed.

3-227

305-CD-042-001

Include Files
FoMsLoadGenReq. h

Preprocessor Macros
_FoMsFSW.oadGenReq_h_

Types
cl ass FoMsFSW.oadCGenReq
stp/omt class definition 2795027

Base Classes
publ i c FoMsLoadGenReq

System Include Files
rw col l ect.h

Preprocessor Macros
_FoMsLoadGenReq_h_

Types
cl ass FoMsLoadGenReq

Base Classes
public RWCol | ect abl e

Private Data

RWCString nmyDirectory

The directory in which the input file is stored.
RWCSt ri ng nyFunction

The purpose of the load.

RWCSt ri ng nmyLoadNane

The name which should be assigned to the load. Also the name of the input file.

EcTlint nySize

The size of the input file in bytes.
RWCStri ng nySpacecraftld

Theid of the spacecraft for which the load should be made.
RWCSt ri ng nySubsystem d

Theid of the subsystem for which the load should be made.
RWCString myUserld

The identifying information about the originator of the request.

FOSTi nel nt erval nyVal i dUpl i nkPeri od
The period during which the load is valid.

3-228

305-CD-042-001

Include Files
FoMsLoadGenReq. h

Preprocessor Macros
_FoMsMPLoadCGenReq_h_

Types

cl ass FoMsMPLoadGenReq
stp/omt class definition 2795028

Base Classes
publ i c FoMsLoadGenReq

Include Files
FoMsLoadGenReq. h

Preprocessor Macros
_FoMsRTSLoadGenReq_h_

Types
cl ass FoMsRTSLoadCGenReq

class definition

Base Classes
publ i ¢ FoMsLoadGenReq

Private Data

EcTl nt myCheckOnl yFl ag
Specifiesif the RTS isto be constraint checked only.

EcTlnt nyOfset
The offset of the commandsin the RTS.

EcTl nt nyRTSBuf f er Nunber
The buffer number in which the RTS load will be stored.

Include Files
FoMsLoadGenReq. h

Preprocessor Macros
_FoMsTabl eLoadGenReq_h_

Types
cl ass FoMsTabl eLoadCGenReq

class definition

3-229

305-CD-042-001

Base Classes
publ i c FoMsLoadGenReq

Private Data

EcTl nt nyEndLocati on

The location in the table where the load should end. If it is not set, the table load will include all locations from myStart-
Field to the end of the table.

EcTint nyStartField

Thelocation in the table where the load should begin. This makesit possible to have partia tableloads. The default is set
to 0.

RWCSt ri ng nyTabl eName
The name of the table, used to locate the format.
Preprocessor Macros
_FpRmLoadAct Del _h_

Types

cl ass FpRmlLoadAct De
Instances of a FpRmLoadActDel provide the proxy for sending |oad deletion messages.

Public Construction
FpRmLoadAct Del (const FpRmioadAct Del &)

Copy constructor.
FpRmLoadAct Del (voi d)
Constructor.
~FpRnioadAct Del (voi d)
Destructor.

Public Functions

i nt | oadAct Del Request (const HString&, int)
Send the request saying that aload has been deleted.

voi d operator =(const FpRnlioadAct Del &)
Assignment operator.

3-230 305-CD-042-001

Abbreviations and Acronyms

ACL
AD
AGS
AM

Ao
APID
ARAM
ASTER

ATC
BAP
BC

BD
BDU
bps
CAC
CCB
CCSDS
CCTI
CD-ROM
CDR
CDRL
CERES
Cl

CIL
CLCW
CLTU
CMD
CMS
CODA
COP
COTS
CPU

Access Control List

Acceptance Check/TC Data

ASTER Ground System

Morning (ante meridian) -- see EOS AM

Availability
Application Identifier

Automated Reliability/Availability/Maintainability

Advanced Spaceborne Thermal Emission and Reflection Radiometer

(formerly ITIR)
Absolute Time Command
Baseline Activity Profile

Bypass check/Control Commands
Bypass check/TC Data (Expedited Service)

Bus Data Unit
bits per second

Command Activity Controller

Change Control Board

Consultative Committee for Space Data Systems
Control Center Technology Interchange
Compact Disk-Read Only Memory

Critical Design Review

Contract Data Requirements List
Clouds and Earth's Radiant Energy System

Configuration item
Critical ItemsList

Command Link Control Words

Command Link Transmission Unit

Command subsystem

Command Management Subsystem
Customer Operations Data Accounting
Command Operations Procedure

Commercial Off-The-Shelf
Central Processing Unit

AB-1

305-CD-042-001

CRC
CSCl
CSMS
CSS
CSTOL
CTIU
DAAC
DAR
DAS
DAT
DB
DBA
DBMS
DCE
DCP
DEC
DES
DFCD
DID
DMS
DOD
DoD
DS
DSN
DSS
e-mail
Ecom
ECS
EDOS
EDU
EGS
EOC

EOD
EON
EOS

Cyclic Redundancy Code

Computer software configuration item
Communications and Systems Management Segment
Communications Subsystem (CSMS)

Customer System Test and Operations Language
Command and Telemetry Interface Unit (AM-1)

Distributed Active Archive Center
Data Acquisition Request
Detailed Activity Schedule
Digital Audio Tape

Data Base

Database Administrator

Database Management System

Distributed Computing Environment

Default Configuration Procedure
Digital Equipment Corporation
Data Encryption Standard

Data Format Control Document
Data Item Description

Data Management Subsystem
Digital Optical Data

Department of Defense

Data Server

Deep Space Network

Decision Support System
electronic mail

EOS Communication

EOSDIS Core System

EOS Data and Operations System
EDOS Data Unit

EOS Ground System

Earth Observation Center (Japan);
EOS Operations Center (ECS)

Entering Orbital Day
Entering Orbital Night
Earth Observing System

AB-2

305-CD-042-001

EOSDIS
EPS
ESH
ESN
ETS
EU
EUVE
FAS
FAST
FDDI
FDF
FDIR
FDM
FMEA
FOP
FORMATS
FOS
FOT
FOV
FPS
FRM
FSE
FTL
FUI
GB
GCM
GCMR
GIMTACS
GMT
GN
GOES
GSFC
GUlI
H&S
H/K
HST

EOS Data and Information System
Encapsul ated Postscript

EDOS Service Header

EOSDI'S Science Network

EOS Test System

Engineering Unit

Extreme Ultra Violet Explorer

FOS Analysis Subsystem

Fast Auroral Snapshot Explorer
Fiber Distributed Data Interface
Flight Dynamics Facility

Fault Detection and I solation Recovery
FOS Data Management Subsystem
Failure Modes and Effects Analyses
Frame Operations Procedure

FDF Orbital and Mission Aids Transformation System

Flight Operations Segment

Flight Operations Team

Field-Of-View

Fast Packet Switch

FOS Resource Management Subsystem

FOT S/C Evolutions

FOS Telemetry Subsystem

FOS User Interface

Gigabytes

Global Circulation Model

Global Circulation Model Request

GOES I-M Telemetry and Command System
Greenwich Mean Time

Ground Network

Geostationary Operational Environmental Satellite
Goddard Space Flight Center

Graphical User Interface

Health and Safety

Housekeeking

Hubble Space Telescope

AB-3

305-CD-042-001

I/F
1/0
ICC
ICD
ID
IDB
IDR
|EEE
|OT
P
IP-ICC
IPs
IRD
ISDN
ISOLAN
ISR
IST
IST
IWG
JPL
Kbps
LAN
LaRC
LASP
LEO
LOS
LSM
LTIP
LTSP
MAC

MB
MBONE
Mbps
MDT
MIB

Interface

I nput/Output

Instrument Control Center
Interface Control Document
| dentifier

Instrument Database
Incremental Design Review

Institute of Electrical and Electronics Engineers

Instrument Operations Team
International Partners

International Partners-1nstrument Control Center

International Partners

Interface requirements document
Integrated Systems Digital Network
Isolated Local Area Network

Input Schedule Request

Instrument Support Terminal
Instrument Support Toolkit
Investigator Working Group

Jet Propulsion Laboratory

Kilobits per second

Local Area Network

Langley Research Center
Laboratory for Atmospheric Studies Project
Low Earth Orbit

Lossof Signd

Loca System Manager

Long-Term Instrument Plan
Long-Term Science Plan

Medium Access Control;
Message Authentication Code

Megabytes

Multicast Backbone

M egabits per second

Mean Down Time
Management Information Base

AB-4

305-CD-042-001

MISR
MMM
MO&DSD
MODIS
MOPITT
MSS
MTPE
NASA
Nascom
NASDA
NCAR
NCC
NEC
NFS
NOAA
NSI
NTT
OASIS
ODB
ODM
OMT
(0[]
OO0D
OpLAN
osl
PACS
PAS
PDB
PDF
PDL
PDR

Pl

PI/TL
PID
PIN
POLAR

Multi-angle Imaging Spectro-Radiometer
Minimum, Maximum, and Mean

Mission Operations and Data Systems Directorate (GSFC Code 500)

M oderate resolution Imaging Spectrometer
Measurements Of Pollution In The Troposphere
Management Subsystem

Mission to Planet Earth

National Aeronautics and Space Administration
NASA Communications Network

National Space Development Agency (Japan)
National Center for Atmospheric Research
Network Control Center

North Equator Crossing

Network File System

National Oceanic and Atmospheric Administration
NASA Science Internet

Nippon Telephone and Telegraph

Operations and Science Instrument Support
Operational Database

Operational Data Message

Object Model Technique

Object Oriented

Object Oriented Design

Operational LAN

Open System Interconnect

Polar Acquisition and Command System
Planning and Scheduling

Project Data Base

Publisher's Display Format

Program Design Language

Preliminary Design Review

Principal Investigator

Principal Investigator/Team Leader
Parameter |ID

Password Identification Number

Polar Plasma L aboratory

AB-5

305-CD-042-001

POSIX
PSAT
PSTOL
QIL
RIT
RAID
RCM
RDBMS
RMA
RMON
RMS
RPC
RTCS
RTS

SSIM

STOL

Polar-Orbiting Platform

Portable Operating System for Computing Environments
Predicted Site Acquisition Table

PORTS System Test and Operation Language
Quick Look

Real-Time

Redundant Array of Inexpensive Disks
Real-Time Contact Management

Relational Database Management System
Reliability, Maintainability, Availability

Remote Monitoring

Resource Management Subsystem

Remote Processing Computer

Relative Time Command Sequence

Relative Time Sequence;
Real-Time Server

Spacecraft

Schedule Add Requests

Spacecraft Controls Computer

Science Computing Facility

Spacecraft Command Language

Software Development Facility

Science Data Processing Segment

Software Development and Validation Facility
Systems, Engineering, and Analysis Support
South Equator Crossing

Support LAN

S-band Multiple Access

Service Management Center

Space Network

System Network Mgt Protocol

Structured Query Language

S-band Single Access

Spacecraft Simulator

Solid State Recorder

System Test and Operations Language

AB-6

305-CD-042-001

T&C
TAE
TBD
TBR
TCP
TD
TDM
TDRS
TDRSS
TIROS
TL
TLM
TMON
TOO
TOPEX
TPOCC
TRMM
TRUST
TSS
TSTOL
T™W
u.s.
UAV
ul

UPS
us
UTC

VAX
VMS
WIS
WAN
WOTS
XTE

Telemetry and Command

Transportable Applications Environment

To Be Determined

To Be Replaced/Resol ved/Reviewed
Transmission Control Protocol

Target Day

Time Division Multiplex

Tracking and Data Relay Satellite

Tracking and Data Relay Satellite System
Television Infrared Operational Satellite
Team Leader

Telemetry subsystem

Telemetry Monitor

Target Of Opportunity

Topography Ocean Experiment
Transportable Payload Operations Control Center
Tropical Rainfall Measuring Mission
TDRSS Resource User Support Terminal
TDRSS Service Session

TRMM System Test and Operations Language
Target Week

United States

User AntennaView

User Interface

User Planning System

User Station

Universal Time Code;
Universal Time Coordinated

Virtual Extended Address
Virtual Memory System
Workstation

Wide Area Network

Wallops Orbital Tracking Station
X-Ray Timing Explorer

AB-7

305-CD-042-001

This page intentionally left blank.

AB-8 305-CD-042-001

Glossary

GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined
start date, takes a specific amount of time to complete, and
comprises definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analyticad methods. Anaysis
involves the processing of accumulated data obtained from
other verification methods.

attitude data Data that represent spacecraft orientation and onboard
pointing information. Attitude dataincludes:
0 Attitude sensor data used to determine the pointing of the
Spacecraft axes, calibration and alignment data, Euler
angles or quaternions, rates and biases, and associated
parameters.
0 Attitude generated onboard in quaternion or Euler angle
form.
o Refined and routine production data related to the
accuracy or knowledge of the attitude.

availability A measure of the degree to which an item isin an operable
and committable state at the start of a "mission” (a
requirement to perform its function) when the "mission” is
called for an unknown (random) time. (Mathematically,
operational availability isdefined asthe mean time between
failures divided by the sum of the mean time between
failures and the mean down time [before restoration of
function].

GL-1 305-CD-042-001

availability The probability that, when under stated conditions in an
(inherent) (Aj) ideal support environment without consideration for
preventive action, asystem will operate satisfactorily at any
time. The “ideal support environment” referred to, exists
when the stipul ated tools, parts, skilled work force manuals,
support equipment and other support items required are
available. Inherent availability excludes whatever ready
time, preventive maintenance downtime, supply downtime
and administrative downtime may require. Aj can be

expressed by the following formula:

A = MTBF/ (MTBF+MTTR)

Where: MTBF = Mean Time Between Failures
MTTR = Mean Time To Repair

availability The probability that a system or equipment, when used

(operational) (Ap) under stated conditions in an actual operational
environment, will operate satisfactorily when called upon.
Ao can be expressed by the following formula:

Ap = MTBM /(MTBM + MDT + ST)
Wheree MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and
logistics actions are al considered.

ST = Standby Time (or switch over time)

A schedule of activities for atarget week corresponding to
normal instrument operations constructed by integrating
long term plans(i.e., LTSP, LTIP, and long term spacecraft
operations plan).

build An assemblage of threads to produce a gradual buildup of
system capabilities.
calibration The collection of datarequired to perform calibration of the

instrument science data, instrument engineering data, and
the spacecraft engineering data. It includes pre-flight
calibration measurements, in-flight calibrator
measurements, calibration equation coefficients derived
from calibration software routines, and ground truth data
that areto be used in the data calibration processing routine.

GL-2 305-CD-042-001

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command and data The spacecraft command and data handling subsystem

handling (C&DH) which conveys commands to the spacecraft and research
instruments, collects and formats spacecraft and instrument
data, generates time and frequency references for
subsystems and instruments, and collects and distributes
ancillary data.

command group A logical set of one or more commandswhich are not stored
onboard the spacecraft and instruments for delayed
execution, but are executed immediately upon reaching
their destination on board. For the U.S. spacecraft, from the
perspective of the EOS Operations Center (EOC), a
preplanned command group is preprocessed by, and stored
at, the EOC in preparation for later uplink. A real-time
command group is unplanned in the sense that it is not
preprocessed and stored by the EOC.

detailed activity The schedule for a spacecraft and instruments which covers

schedules up to al0 day period and is generated/updated daily based
on theinstrument activity listing for each of the instruments
on the respective spacecraft. For a spacecraft and
instrument schedule the spacecraft subsystem activity
specifications needed for routine spacecraft maintenance
and/or for supporting instruments activities are
incorporated in the detailed activity schedule.

direct broadcast Continuous down-link transmission of selected rea-time
data over a broad area (non-specific users).

GL-3 305-CD-042-001

EOS Data and
Operations System

(EDOS) production
data set

housekeeping data

instrument

instrument activity
deviation list

instrument activity
list

instrument
engineering data
instrument

Mi Croprocessor
memory loads

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission
artifacts removed, in time order, with duplicate data
removed, and with quality/ accounting (Q/A) metadata
appended. Time span or number of packets encompassed
inasingle data set are specified by the recipient of the data.
These data sets are equivalent to Level 0 data formatted
with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual
packet and the data set itself and with essential formatting
information for unambiguous identification and subsequent
processing.

The subset of engineering data required for mission and
science operations. These include health and safety,
ephemeris, and other required environmental parameters.

0 A hardware system that collects scientific or operational
data.

0 Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

0 An integrated collection of hardware containing one or
more sensors and associated controls designed to produce
data on/in an observational environment.

An instrument's activity deviations from an
existinginstrument activity list, used by the EOC for
developing the detailed activity schedule.

An instrument's list of activities that nominally covers
seven days, used by the EOC for developing the detailed
activity schedule.

Subset of telemetered engineering data required for
performing instrument operations and science processing

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads

could include mi croprocessor-stored tables,
microprocessor-stored commands, or updates to

microprocessor software.

GL-4

305-CD-042-001

instrument resource An instrument's anticipated resource deviations from

deviation list anexisting resource profile, used by the EOC for
establishing TDRSS contact times and building the
preliminary resource schedule.

instrument resource Anticipated resource needs for an instrument over a

profile targetweek, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

instrument science Data produced by the science sensor(s) of an instrument,

data usually constituting the mission of that instrument.

long-term The plan generated by the instrument representative to the

instrument plan spacecraft's IWG with instrument-specific information to

(LTIP) complement the LTSP. It is generated or updated

approximately every six months and covers a period of up
to approximately 5 years.

long-term science The plan generated by the spacecraft's IWG containing

plan (LTSP) guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated
approximately every six months and covers a period of up
to approximately five years.

long term spacecraft Outlines anticipated spacecraft subsystem operations and

operations plan maintenance, along with forecasted orbit maneuvers from
the Flight Dynamics Facility, spanning a period of several
months.

mean time between The reliability result of the reciprocal of afailure rate that

failure (MTBF) predictsthe average number of hoursthat anitem, assembly

or piece part will operate within specific design parameters.
(MTBF=1/(]) failure rate; (l) failure rate = # of failures/
operating time.

mean down time Sum of the mean time to repair MTTR plus the average

(MDT) logistic delay times.

mean time between The mean time between preventive maintenance (MTBPM)
maintenance and mean time between corrective maintenance (MTBCM)
(MTBM) of the ECS equipment. Each will contribute to the

caculation of the MTBM and follow the relationship:
YMTBM =1/MTBPM + YMTBCM

mean timeto repair The mean time required to perform corrective maintenance
(MTTR) to restore a system/equipment to operate within design
parameters.

GL-5 305-CD-042-001

object Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are
identified by client via unique reference.

orbit data Data that represent spacecraft locations. Orbit (or
ephemeris) data include: Geodetic latitude, longitude and
height above an adopted reference ellipsoid (or distance
from the center of mass of the Earth); a corresponding
statement about the accuracy of the position and the
corresponding time of the position (including the time
system); some accuracy requirements may be hundreds of
meters while other may be afew centimeters.

playback data Data that have been stored on-board the spacecraft for
delayed transmission to the ground.

preliminaryresource An initial integrated spacecraft schedule, derived from

schedule instrument and subsystem resource needs, that includes the
network control center TDRSS contact timesand nominally
Spans seven days.

preplanned stored A command issued to an instrument or subsystem to be

command executed at some later time. These commands will be
collected and forwarded during an available uplink prior to
execution.

principal An individual who is contracted to conduct a specific

investigator (PI) scientific investigation. (An instrument Pl is the person
designated by the EOS Program as ultimately responsible
for the delivery and performance of standard products
derived from an EOS instrument investigation.)

prototype Prototypes are focused devel opments of some aspect of the
system which may advance evolutionary change.
Prototypes may be developed without anticipation of the
resulting software being directly included in a formal
release. Prototypes are developed on a faster time scale
than the incremental and formal development track.

GL-6 305-CD-042-001

raw data Data in their original packets, as received from the
spacecraft and instruments, unprocessed by EDOS.
0 Level 0 — Raw instrument data at original resolution,
time ordered, with duplicate packets removed.
o Level 1A - Level O data, which may have been
reformatted or transformed reversibly, located to a
coordinate system, and packaged with needed ancillary and
engineering data.
0 Level 1B —Radiometrically corrected and calibrated data
in physical units at full instrument resolution as acquired.
0 Leve 2 —Retrieved environmental variables (e.g., ocean
wave height, soil moisture, ice concentration) at the same
location and similar resolution as the Level 1 source data.
0 Level 3—Dataor retrieved environmental variables that
have have been spatially and/or temporally resampled (i.e.,
derived from Level 1 or Level 2 data products). Such
resampling may include averaging and compositing.
0 Level 4 — Model output and/or variables derived from
lower level data which are not directly measured by the
instruments. For example, new variables based upon atime
seriesof Level 2 or Level 3 data.

real-time data Data that are acquired and transmitted immediately to the
ground (as opposed to playback data). Delay is limited to
the actual time required to transmit the data.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s
objectives.

SCC-stored Commands and tables which are stored in the memory of

commands and the central onboard computer on the spacecraft. The

tables execution of these commands or the result of loading these

operational tables occurs sometime following their storage.
The term “core-stored” applies only to the location where
theitems are stored on the spacecraft and instruments; core-
stored commands or tables could be associated with the
spacecraft or any of the instruments.

scenario A description of the operation of the system in user's
terminology including a description of the output response
for agiven set of input stimuli. Scenarios are used to define
operations concepts.

GL-7 305-CD-042-001

segment One of the three functional subdivisions of the ECS:
CSMS -- Communications and Systems Management
Segment
FOS -- Flight Operations Segment
SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.).
Science and engineering sensors are distinguished
according to the stimuli to which they respond.
0 Sensor name: The name of the satellite sensor which

was used to obtain that data.
spacecraft The subset of engineering data from spacecraft sensor
engineering data measurements and on-board computations.
spacecraft A spacecraft subsystem's list of activities that nominally
subsystems activity covers seven days, used by the EOC for developing the
list detailed activity schedule.
spacecraft Anticipated resource needs for a spacecraft subsystem over
subsystemsresource atarget week, used by the EOC for establishing TDRSS
profile contact times and building the preliminary resource
schedule.
target of opportunity A TOO is a science event or phenomenon that cannot be
(TOO) fully predicted in advance, thus requiring timely system
response or high-priority processing.
thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions,
thread, asusedin A set of components (software, hardware, and data) and
some Systems operational procedures that implement a scenario, portion
Engineering of a scenario, or multiple scenarios.
documents
toolkits Some user toolkits devel oped by the ECS contractor will be

packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

GL-8 305-CD-042-001

	1.��Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2.��Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced

	3.��Command Management
	3.1 Command Management Context
	3.2 CMS Schedule Controller
	3.2.1 CMS Schedule Controller Context
	3.2.2 CMS Schedule Controller Interfaces
	3.2.3 CMS Schedule Controller Obect Model
	3.2.4 CMS Schedule Controller Dynamic Model
	3.2.5 CMS Schedule Controller Data Dictionary

	3.3 Ground Schedule
	3.3.1 Ground Schedule Context
	3.3.2 Ground Schedule Interfaces
	3.3.3 Ground Schedule Obect Model
	3.3.4 Ground Schedule Dynamic Model
	3.3.5 Ground Schedule Data Dictionary

	3.4 Command Model
	3.4.1 Command Model Context
	3.4.2 Command Model Interfaces
	3.4.3 Command Model Obect Model
	3.4.4 Command Model Dynamic Model
	3.4.5 Command Model Data Dictionary

	3.5 Spacecraft Model
	3.5.1 Spacecraft Model Context
	3.5.2 Spacecraft Model Interfaces
	3.5.3 Spacecraft Model Obect Model
	3.5.4 Spacecraft Model Dynamic Model
	3.5.5 Spacecraft Model Data Dictionary

	3.6 Load Catalog
	3.6.1 Load Catalog Context
	3.6.2 Load Catalog Interfaces
	3.6.3 Load Catalog Obect Model
	3.6.4 Load Catalog Dynamic Model
	3.6.5 Load Catalog Data Dictionary

	List of Figures
	Figure 3.1-1. CMS Context Diagram
	Figure 3.2-1. Schedule Controller Context Diagram
	Figure 3.2-2. Schedule Controller Obect Model - P...
	Figure 3.2-3. Schedule Controller Object Model - P...
	Figure 3.2-4. Schedule Controller Object Model - P...
	Figure 3.2-5. Schedule Controller Object Model - P...
	Figure 3.2-6. Schedule Controller Object Model - P...
	Figure 3.2-7. Schedule Controller Object Model - P...
	Figure 3.2-8. Schedule Controller Object Model - P...
	Figure 3.2-9. Schedule Controller Object Model - P...
	Figure 3.2-10. Schedule Controller Initialization ...
	Figure 3.2-11. Schedule Controller DAS Receipt Eve...
	Figure 3.2-12. DAS Receipt Scenario - Soft Constra...
	Figure 3.2-13. DAS Receipt Scenario - Hard Constra...
	Figure 3.2-14. Late Change Receipt Event Trace
	Figure 3.2-15. "What-if" Receipt Scenario - Hard C...
	Figure 3.3-1. Ground Schedule Context Diagram
	Figure 3.3-2. Ground Schedule Object Model - page ...
	Figure 3.3-3. Ground Schedule Object Model - page ...
	Figure 3.3-4. Ground Schedule Object Model - File...
	Figure 3.3-5. Ground Schedule Initialization Event...
	Figure 3.3-6. Expanded DAS Processing Event Trace
	Figure 3.3-7. Delete from Schedule Event Trace
	Figure 3.3-8. Expected State Table Generation Even...
	Figure 3.3-9. Ground Script Generation Event Trace...
	Figure 3.4-1. Command Model Context Diagram
	Figure 3.4-2. Command Model Object Model (1 of 7)
	Figure 3.4-3. Command Model Object Model (2 of 7)
	Figure 3.4-4. Command Model Object Model (3 of 7)
	Figure 3.4-5. Command Model Object Model (4 of 7)
	Figure 3.4-6. Command Model Object Model (5 of 7)
	Figure 3.4-7. Command Model Obect Model (6 of 7)
	Figure 3.4-8. Command Model Obect Model (7 of 7)
	Figure 3.4-9. Command Model Initialization Event T...
	Figure 3.4-10 . Command Model Expanded Directive L...
	Figure 3.4-11. Command Model Command Procedure Rec...
	Figure 3.4-12. Command Model Activity Definition L...
	Figure 3.4-13. Command Model RTS Load Definition R...
	Figure 3.5-1. Spacecraft Model ontext Diagram
	Figure 3.5-2. Spacecraft Model Object Model (1 of ...
	Figure 3.5-3. Spacecraft Model Object Model (2 of ...
	Figure 3.5-4. Spacecraft Model Object Model (3 of ...
	Figure 3.5-5. Spacecraft Model Object Model (4 of ...
	Figure 3.5-6. Spacecraft Model Object Model (5 of ...
	Figure 3.5-7. Spacecraft Model Obect Model (6 of ...
	Figure 3.5-8 . Spacecraft Model Initialization Eve...
	Figure 3.5-9. Spacecraft Model ATC Load Generation...
	Figure 3.5.10. Spacecraft Model ATC Buffer Model U...
	Figure 3.5-11. Spacecraft Model ATC Buffer Model D...
	Figure 3.5-12. Spacecraft Model ATC Buffer Display...
	Figure 3.5-13. Spacecraft Model RTS Buffer Display...
	Figure 3.5-14. Spacecraft Model Map Report Event T...
	Figure 3.5-15. Spacecraft Model Image Report Event...
	Figure 3.5-16. Spacecraft Model Compare Report Eve...
	Figure 3.5-17. Spacecraft Model Table Model & Imag...
	Figure 3.5-18. Spacecraft Model RTS Model & Image ...
	Figure 3.5-19. Spacecraft Model Table Data Request...
	Figure 3.5-20. Spacecraft Model Ground Image Overw...
	Figure 3.6-1. Load Catalog Context Diagram
	Figure 3.6-2. Load Catalog External Interfaces
	Figure 3.6-3. Load Generation Requests
	Figure 3.6-4. Load Types
	Figure 3.6-5. Load Components
	Figure 3.6-6. Load Component File Classes
	Figure 3.6-7. Load Catalog Internal Interfaces
	Figure 3.6-8. Load Catalog Initialization Event Tr...
	Figure 3.6-9. Table Load Generation Event Trace
	Figure 3.6-10. Table Load Generation from FDF Load...
	Figure 3.6-11. Table Load Generation for Clock Cor...
	Figure 3.6-12. RTS Load Generation Event Trace
	Figure 3.6-13. Microprocessor Load Generation Even...
	Figure 3.6-14. Flight Software Load Generation Eve...
	Figure 3.6-15. ATC Load Generation Event Trace
	Figure 3.6-16. Uplink Notification Receipt Event T...

